Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 56 Next »

Motivation


In many practical cases the reservoir flow created by well is getting aligned with a radial direction towards or away from well.

This type of flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

Although the actual flow may not have an axial symmetry around the well-reservoir contact or reservoir inhomogeneities (like boundary and faults and composite areas) but still the dominant part of wellbore and reservoir pressure variation is usually radial-flow or linear-flow and the two represent the basis for Pressure diffusion analysis.

Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(t,r)

reservoir pressure

{p_i}

initial formation pressure

{p_{wf}(t)}

well bottomhole pressure

\sigma

transmissibility

\chi

pressure diffusivity


\sigma = \frac{k \, h}{\mu}

transmissibility

\mu

dynamic fluid viscosity

\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}

pressure diffusivity

c_t = c_r + c

total compressibility

k

absolute permeability

{c_r}

pore compressibility

{\phi}

porosity

c

fluid compressibility



Physical Model


Radial fluid flowHomogenous reservoirInfinite boundarySlightly compressible fluid flowConstant rate production

p(t, r)

M(r, p)=M =\rm const

\phi(r, p)=\phi =\rm const

h(r)=h =\rm const

c_r(r)=c_r =\rm const

r \rightarrow \infty

r_w = 0

c_t(r,p) = c_r(r) +c = \rm const

q_t = \rm const


Mathematical Model




(1) \frac{\partial p}{\partial t} = \chi \, \left( \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right)
(2) p(t = 0, {\bf r}) = p_i
(3) p(t, r \rightarrow \infty ) = p_i
(4) \frac{\partial p(t, r )}{\partial r} \bigg|_{r \rightarrow 0} = \frac{q_t}{\sigma \, d}
(5) p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \, {\rm Ei} \bigg( - \frac{r^2}{4 \chi t} \bigg)
(6) p_{wf}(t) = p_i + \frac{q_t}{4 \pi \sigma} \, \bigg[ - 2S + {\rm Ei} \bigg( - \frac{r_w^2}{4 \chi t} \bigg) \bigg]



Applications


Pressure TestingInfinite reservoir


Pressure Drop
(7) \delta p = p_i - p_{wf}(t) \sim \ln t + {\rm const}


Log derivative
(8) t \frac{d (\delta p)}{dt} \sim \rm const





Fig. 2. PTA Diagnostic plot for radial fluid flow


See also


Physics / Fluid Dynamics / Radial fluid flow

Line Source Solution (LSS) @model ]

Linear Flow Pressure Diffusion @model ]




  • No labels