Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 10 Next »

Motivation


Reservoir pressure dynamics away from wellbore and boundaries is representative of two very important complex reservoir properties: transmissibility  \sigma and pressure diffusivity  \chi.

These can be roughly estimated with a homogeneous reservoir model where wellbore and boundaries effects can be neglected.

Inputs & Outputs



InputsOutputs

q_t

total sandface rate

p(t,r)

reservoir pressure

{p_i}

initial formation pressure



\sigma

transmissibility

\chi

pressure diffusivity


\sigma = \frac{k \, h}{\mu}

transmissibility

\mu

dynamic fluid viscosity

\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}

pressure diffusivity

c_t = c_r + c

total compressibility

k

absolute permeability

{c_r}

pore compressibility

{\phi}

porosity

c

fluid compressibility


Physical Model


Radial fluid flowHomogenous reservoirInfinite boundary

Zero wellbore radius r_w = 0



Mathematical Model


(1) \frac{\partial p}{\partial t} = \chi \, \left[ \frac{\partial^2 p}{\partial t^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right]
(2) p(t=0,r) = p_i
(3) p(t, r=\infty) = p_i
(4) \left[ r \frac{\partial p}{\partial r} \right]_{r=0} = - \frac{q_t}{2 \pi \sigma}


Computational Model


(5) p(t,r) = p_i - \frac{q_t}{4 \pi \sigma} {\rm Ei} \left(-\frac{r^2}{4 \chi t} \right)


Approximations


Late-time response
(6) p(t,r) = p_i - \frac{q_t}{4 \pi \sigma} \left[ \gamma + \ln \left(\frac{r^2}{4 \chi t} \right) \right] = p_i - \frac{q_t}{4 \pi \sigma} \ln \left(\frac{2.24585 \, t}{r^2} \right)


See also


Physics / Fluid Dynamics / Radial fluid flow / Line Source Solution

Radial Flow Pressure @model ] [ 1DR pressure diffusion of low-compressibility fluid ]

  • No labels