Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 54 Next »

Motivation



The most accurate way to simulate Aquifer Expansion (or shrinkage) is full-field 3D Dynamic Flow Model where Aquifer Expansion is treated as one of the fluid phases and accounts of geological heterogeneities, gas fluid properties, relperm properties and heat exchange with surrounding rocks.

Unfortunately, in many practical cases the detailed information on the aquifer is not available which does not allow a proper modelling of aquifer expansion using a geological framework.

Besides many practical applications require only knowledge of cumulative water influx from aquifer under pressure depletion. 

This allows building an Aquifer Drive Models using analytical methods.


Inputs & Outputs



InputsOutputs

p(t)

field-average formation pressure at time moment t

Q^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

p_i

initial formation pressure

q^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

J_{AQ}

aquifer Productivity Index





\tau

aquifer relaxation time


Detailing Inputs

\displaystyle J_{AQ} = \frac{\theta}{2\pi} \cdot \frac{2 \pi \sigma}{\ln \frac{A_{AQ}}{A_e}+0.75}


aquifer Productivity Index

\theta

Central Angle of net pay area - aquifer contact

\sigma

aquifer transmissibility

A_e

net pay area

A_{AQ}

aquifer area

\displaystyle \tau = \frac{V_{AQ} \, c_t}{J_{AQ}}

aquifer relaxation time

c_t=c_r +c_w

aquifer total compressibility

c_r

aquifer pore compressibility 

c_w

aquifer water compressibility

V_{AQ} = A_e \cdot h_e \cdot \phi

aquifer volume 

h_e

aquifer effective thickness

\phi_e

aquifer porosity


Assumptions



Const Productivity Index Aquifer
J_{AQ} = \frac{q_{AQ}}{p_{AQ}(t)-p(t)} = \rm const


p_{AQ}(t) = p_i - \frac{Q_{AQ}(t)}{V_{AQ} \cdot c_t}



Equations


(1) \frac{d Q^{\downarrow}_{AQ}}{dt} + \frac{1}{\tau} Q^{\downarrow}_{AQ} = J \cdot ( p_i - p(t))
(2) q^{\downarrow}_{AQ}(t)=\frac{d Q^{\downarrow}_{AQ}}{dt}


Assumption #1 = Const Productivity Index Aquifer:

q_{AQ} = \frac{d Q_{AQ}}{dt} = J_{AQ} \cdot ( p_{AQ}(t) - p(t))

Assumption #2 = Pseudo Steady State Flow:

p_{AQ}(t) = p_i - \frac{Q_{AQ}}{V_{AQ} c_t}

Eliminating p_{AQ}(t) one arrives to (1).


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive @model

Reference


 1.   Fetkovich, M.J. 1971. A Simplified Approach to Water Influx Calculations—Finite Aquifer Systems. J Pet Technol 23 (7): 814–28. SPE-2603-PAhttp://dx.doi.org/10.2118/2603-PA

  • No labels