Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 19 Next »


We start with reservoir pressure diffusion outside wellbore:

(1) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \sum_k m_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(2) \int_{{\Gamma}} \, \rho(p) \, {\bf u} \, d {\bf A} = m_{\Gamma}(t)

where

\Sigma_k

well-reservoir contact of the  k-th well

d {\bf \Sigma}

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

m_k(t)

mass rate at  k-th well  m_k(t) = \rho(p) \cdot q_k(t)

q_k(t)

sandface flowrate at  k-th well 

\rho(p)

fluid density as function of reservoir fluid pressure  p


Then use the following equality:

(3) d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} + \frac{d \rho }{\rho} \right) = \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) = \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

to arrive at:

(4) \rho \, \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \rho \, \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(5) \int_{{\Gamma}} \, {\bf u} \, d {\bf A} = q_{\Gamma}(t)

where

c_t = с_\phi+ c


Then use the following equality:

(6) \nabla \, ( \rho \, {\bf u}) = \rho \, \nabla \, {\bf u} + (\nabla \rho, \, {\bf u}) = \rho \, \nabla \, {\bf u} + \frac{d\rho}{dp} \cdot (\nabla p, \, {\bf u}) = \rho \, \nabla \, {\bf u} + \rho \, c \cdot (\nabla p, \, {\bf u})

where  \displaystyle c(p) = \frac{1}{\rho} \frac{d\rho}{dp} is fluid compressibility.


Substituting (6) into (4) and reducing the density  \rho(p) one arrives to:

(7) \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla {\bf u} + c \cdot ( {\bf u} \, \nabla p) = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(8) \int_{{\Gamma}} \, {\bf u} \, d {\bf A} = q_{\Gamma}(t)


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model





  • No labels