Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 33 Next »


We start with reservoir pressure diffusion outside wellbore:

(1) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
(2) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

\Sigma_k

well-reservoir contact of the  k-th well

d {\bf \Sigma}

normal vector of differential area on the well-reservoir contact, pointing inside wellbore


Then use the following equality:

(3) d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} + \frac{d \rho }{\rho} \right) = \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) = \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

to arrive at:

(4) \rho \, \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
(5) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

c_t = с_\phi+ c


We start with  (Single-phase pressure diffusion @model:1):

(6) \phi \cdot c_t \cdot \partial_t p + \nabla {\bf u} + c \cdot ( {\bf u} \, \nabla p) = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(7) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})

and neglect the non-linear term  c \cdot ( {\bf u} \, \nabla p) for low compressibility fluid c \sim 0 or equivalently to a constant fluid density: \rho(p) = \rho = \rm const.

Together with constant pore compressibility  c_r = \rm const this will lead to constant total compressibility  c_t = c_r + c \approx \rm const.

Assuming that permeability and fluid viscosity do not depend on pressure k(p) = k = \rm const and \mu(p) = \mu = \rm const one arrives to the differential equation with constant coefficients

(8) \phi \, c_t \cdot \partial_t p + \nabla {\bf u} = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(9) {\bf u} = - \frac{k}{\mu} \cdot ( \nabla p - \rho \, {\bf g})


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model





  • No labels