Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


We start with reservoir pressure diffusion outside wellbore:

LaTeX Math Block
anchorrho_dif
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where

LaTeX Math Inline
body\Sigma_k

well-reservoir contact of the 

LaTeX Math Inline
bodyk
-th well

LaTeX Math Inline
body--uriencoded--d %7B\bf \Sigma%7D

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

and use 

LaTeX Math Block Reference
anchordin_term
pageDerivation of Linear pressure diffusion @model
 to arrive at:

LaTeX Math Block
anchorS8TNB
alignmentleft
\rho \, \phi \, c_t  \cdot \frac{\partial (p)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where

LaTeX Math Inline
bodyc_t


Let's assume Darcy flow with constant permeability 

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7Bdk%7D%7Bdp%7D = 0
and ignore gravity forces:

LaTeX Math Block
anchorqk
alignmentleft
 {\bf u} = \frac{k}{\mu} \nabla \, p

so that diffusion equation becomes:

LaTeX Math Block
anchorS8TNB
alignmentleft
\rho \, \phi \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{\rho}{\mu} \, \nabla  \, p) = 0
LaTeX Math Block
anchorqk
alignmentleft
\frac{k}{\mu} \cdot \int_{\Sigma_k} \,  {\bf \nabla } \, p \cdot  d {\bf A} = q_k(t)

Let's express the density via Z-factor:

LaTeX Math Block
anchorWYVS5
alignmentleft
\rho = \frac{M}{RT} \, \frac{p}{Z(p)}

where

LaTeX Math Inline
bodyT

fluid temperature

LaTeX Math Inline
bodyM

molar mass of a fluid

LaTeX Math Inline
bodyR

gas constant

and assuming the fluid temperature 

LaTeX Math Inline
bodyT
 does not change over time and space during the modelling period:

LaTeX Math Block
anchorS8TNB
alignmentleft
 \phi \, c_t \, \mu  \cdot \frac{p}{\mu \, Z} \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{p}{\mu \, Z} \, \nabla  \, p) = 0
LaTeX Math Block
anchorqk
alignmentleft
\frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot   d {\bf A} = q_k(t)

or

LaTeX Math Block
anchorprePZ
alignmentleft
\phi \, c_t \, \mu   \cdot \frac{\partial \Psi}{\partial t} + \nabla \, ( k \cdot \nabla  \, \Psi) = 0
LaTeX Math Block
anchorqk
alignmentleft
\frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot   d {\bf A} = q_k(t)

where

LaTeX Math Inline
body--uriencoded--\displaystyle \Psi(p) =2 \, \int_0%5ep \frac%7Bp \, dp%7D%7B\mu(p) \, Z(p)%7D

Pseudo-Pressure


In some practical cases the complex 

LaTeX Math Inline
bodyc_t \, \mu
 can be considered as constant in time which makes  
LaTeX Math Block Reference
anchorprePZ
 a linear differential equation.

But during the early transition times the pressure drop is usually high and the complex 

LaTeX Math Inline
bodyc_t \, \mu
 can not be considered as constant in time which leads to distortion of pressure transient diagnostics at early times.

In this case one can use Pseudo-Time, calculated by means of the bottom-hole pressure

LaTeX Math Inline
body--uriencoded--p_%7BBHP%7D(t)
:

LaTeX Math Block
anchortau
alignmentleft
\tau(t) = \int_0^t \frac{dt}{\mu(p_{BHP}(t)) \, c_t(p_{BHP}(t))}

to correct early-time transient  behaviour which turn equation

LaTeX Math Block Reference
anchorprePZ
 into:

LaTeX Math Block
anchorDD3EH
alignmentleft
\phi  \cdot \frac{\partial \Psi}{\partial \tau} + \nabla \, ( k \cdot \nabla  \, \Psi) = 0



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Pseudo-linear pressure diffusion @model