We start with reservoir pressure diffusion outside wellbore:

\frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where

well-reservoir contact of the -th well

normal vector of differential area on the well-reservoir contact, pointing inside wellbore


Then use the following equality:

d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} +  \frac{d \rho }{\rho}  \right) 
= \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) 
= \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

to arrive at:

\rho \, \phi \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where


Let's assume Darcy flow with constant permeability  and ignore gravity forces:

 {\bf u} = \frac{k}{\mu} \nabla \, p

so that diffusion equation becomes:

\rho \, \phi \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{\rho}{\mu} \, \nabla  \, p) = 0
\frac{k}{\mu} \cdot \int_{\Sigma_k} \,  {\bf \nabla } \, p \cdot  d {\bf A} = q_k(t)

Let's express the density via Z-factor:

\rho = \frac{M}{RT} \, \frac{p}{Z(p)}

where

fluid temperature

molar mass of a fluid

gas constant

and assuming the fluid temperature  does not change over time and space during the modelling period:

 \phi \, c_t \, \mu  \cdot \frac{p}{\mu \, Z} \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{p}{\mu \, Z} \, \nabla  \, p) = 0
\frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot   d {\bf A} = q_k(t)

or

\phi \, c_t \, \mu   \cdot \frac{\partial \Psi}{\partial t} + \nabla \, ( k \cdot \nabla  \, \Psi) = 0
\frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot   d {\bf A} = q_k(t)

where

Pseudo-Pressure


In some practical cases the complex  can be considered as constant in time which makes   a linear differential equation.

But during the early transition times the pressure drop is usually high and the complex  can not be considered as constant in time which leads to distortion of pressure transient diagnostics at early times.

In this case one can use Pseudo-Time, calculated by means of the bottom-hole pressure :

\tau(t) = \int_0^t \frac{dt}{\mu (p_{BHP} ) \, c_t (p_{BHP}) } \, , \ \  p_{BHP} = p_{BHP}(t) 

to correct early-time transient  behaviour which turn equation  into:

\phi  \cdot \frac{\partial \Psi}{\partial \tau} + \nabla \, ( k \cdot \nabla  \, \Psi) = 0



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Pseudo-linear pressure diffusion @model