Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 17 Next »

We start with reservoir pressure diffusion outside wellbore:

(1) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
(2) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

\Sigma_k

well-reservoir contact of the  k-th well

d {\bf \Sigma}

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

and use 

Error rendering macro 'mathblock-ref' : Page Derivation of Linear pressure diffusion @model could not be found.
 to arrive at:

(3) \rho \, \phi \, c_t \cdot \frac{\partial (p)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
(4) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

c_t


Let's assume Darcy flow with constant permeability  \displaystyle \frac{dk}{dp} = 0 and ignore gravity forces:

(5) {\bf u} = \frac{k}{\mu} \nabla \, p

so that diffusion equation becomes:

(6) \rho \, \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{\rho}{\mu} \, \nabla \, p) = 0
(7) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot d {\bf A} = q_k(t)

Let's express the density via Z-factor:

(8) \rho = \frac{M}{RT} \, \frac{p}{Z(p)}

where

T

fluid temperature

M

molar mass of a fluid

R

gas constant

and assuming the fluid temperature  T does not change over time and space during the modelling period:

(9) \phi \, c_t \, \mu \cdot \frac{p}{\mu \, Z} \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{p}{\mu \, Z} \, \nabla \, p) = 0
(10) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot d {\bf A} = q_k(t)

or

(11) \phi \, c_t \, \mu \cdot \frac{\partial \Psi}{\partial t} + \nabla \, ( k \cdot \nabla \, \Psi) = 0
(12) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot d {\bf A} = q_k(t)

where

\displaystyle \Psi(p) =2 \, \int_0^p \frac{p \, dp}{\mu(p) \, Z(p)}

Pseudo-Pressure


In some practical cases the complex  c_t \, \mu  can be considered as constant in time which makes   (11) a linear differential equation.

But during the early transition times the pressure drop is usually high and the complex  c_t \, \mu  can not be considered as constant in time which leads to distortion of pressure transient diagnostics at early times.

In this case one can use Pseudo-Time, calculated by means of the bottom-hole pressure p_{BHP}(t):

(13) \tau(t) = \int_0^t \frac{dt}{\mu(p_{BHP}(t)) \, c_t(p_{BHP}(t))}

to correct early-time transient  behaviour which turn equation (11) into:

(14) \phi \cdot \frac{\partial \Psi}{\partial \tau} + \nabla \, ( k \cdot \nabla \, \Psi) = 0



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Pseudo-linear pressure diffusion @model



  • No labels