Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Motivation

...


In many practical cases the reservoir fluid flow created by well is getting aligned with a radial direction towards or away from well.

This type of reservoir fluid flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

The radial flow can be infinite acting or boundary dominated or transiting from one to another.

Although the actual reservoir fluid flow may not have an axial symmetry around the well-reservoir contact or around reservoir inhomogeneities (like boundary and faults and composite areas) but still  in many practical cases the long-term correlation between the flowrate and bottom-hole pressure response can be approximated by a radial flow pressure modelthe Radial Flow Pressure Diffusion is evolving towards pressure stabilization and can be efficiently analyzed using the steady state flow model.


Inputs & Outputs

...


InputsOutputs

LaTeX Math Inline
bodyq_t

total sandface rate

LaTeX Math Inline
bodyp(r)

reservoir pressure

LaTeX Math Inline
body{p_i}

initial formation pressure

LaTeX Math Inline
bodyp_{wf}

well bottomhole pressure

LaTeX Math Inline
body\sigma

transmissibility,

LaTeX Math Inline
body\sigma = \frac{k \, h}{\mu}



LaTeX Math Inline
bodyS

skin-factor

...

...

titleDetailing


LaTeX Math Inline
body

...

r_w

wellbore radius

LaTeX Math Inline
body

...


ttotal compressibility, c_t = c_r + cpore compressibility
Expand
titleDetailing
LaTeX Math Inline
body


LaTeX Math Inline
body

h

k

effective thickness
absolute permeability

LaTeX Math Inline
body

{c_r}

h

effective thickness

LaTeX Math Inline
body\mu

dynamic fluid viscosity

LaTeX Math Inline
body

cfluid compressibilitymathinline

body

{\phi}

porosity




Physical Model

...

\rightarrow
Radial fluid flowHomogenous reservoirFinite reservoir flow boundarySlightly compressible fluid flowConstant rateConstant skin

LaTeX Math Inline
bodyp(t, {\bf r}) \rightarrow p(r)

LaTeX Math Inline
body{\bf r} \in ℝ^2 = \{ x, y\}

LaTeX Math Inline
bodyM(r, p)=M =\rm const

LaTeX Math Inline
body\phi(r, p)=\phi =\rm const

LaTeX Math Inline
bodyh(r)=h =\rm const

LaTeX Math Inline
bodyc_r(r)=c_r =\rm const

LaTeX Math Inline
bodyr

_w \leq r \leq r_e < \infty

LaTeX Math Inline
body

LaTeX Math Inline
body

r_w = 0

c_t(r,p) = \rm const

LaTeX Math Inline
bodyq_t = \rm const

LaTeX Math Inline
bodyS = \rm const


Mathematical Model

...


Expand
titleDefinition



LaTeX Math Block
anchor
52112
3MUX9
alignmentleft
r_{wf} < r \leq r_e


LaTeX Math Block
anchor3MUX9
alignmentleft
p(t, r ) = p(r) \Leftrightarrow  \frac{\partial p}{\partial t}  =  0 
\Leftrightarrow



LaTeX Math Block
anchor52112
alignmentleft
 \
, \
frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} =0



LaTeX Math Block
anchor3MUX9
alignmentleft
p(
t, r \rightarrow \infty
r_e ) = p_i



LaTeX Math Block
anchorEM415
alignmentleft
\left[ r\frac{\partial p(
t,
r
)}{\partial r} \right]_{r \rightarrow r_w} = \frac{q_t}{2 \pi \sigma}



LaTeX Math Block
anchor3MUX9
alignmentleft
p_{wf}= p(r_w ) - S \cdot r_w \, \frac{\partial p}{\partial r} \Bigg|_{r=r_w}




Expand
titleSolution



LaTeX Math Block
anchor
p
pwf
alignmentleft
p(r) = p_i 
-
+ \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e} = p(r_w) + \frac{q_t}{
4
2 \pi \sigma} \, \ln \frac{r}{r_w} , \quad r_{wf} < r \leq r_e





LaTeX Math Block
anchorpwf
alignmentleft
p_{wf} = p_i - \frac{q_t}{
4
2 \pi \sigma} \, \bigg[ 
-
S 
2S
+ \ln \frac{r_e}{r_w} \bigg]




Expand
titleDerivation



Applications

...


Equation  Equations 

LaTeX Math Block Reference
anchorp_F
 and 
LaTeX Math Block Reference
anchorpwf
 show  shows how the basic diffusion model parameters impact the pressure response while other diffusion parameters are encoded in relation between drawdown
LaTeX Math Inline
body\Delta p = p_i - p_{wf}
 and total sandface flowrate 
LaTeX Math Inline
bodyF
 function and play
q_t
 and plays important methodological role as they are used in many algorithms and express-methods of Pressure Testing.

...

titleLine Source Solution

...

LaTeX Math Inline
bodyF

...

 

...



 (see Line Source Solution (LSS) @model).

PTA – Pressure Transient Analysis

Pressure Drop
F(z) = {\rm Ei}_1 (z)
Expand
PTA
title
LaTeX Math Block
anchor1EWTY
alignmentleft
\delta p = p_i - p_{wf}(t) \sim  \ln t + {\rm const}

Image Removed

Log derivative
LaTeX Math Block
anchorIBA4M
alignmentleft
t \frac{d (\delta p)}{dt}  \sim \rm const
Fig. 2. PTA Diagnostic plot for radial fluid flow Expand
titleProductivity Index Analysis


The Total Sandface Productivity Index for single-phase low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottom-hole bottomhole pressure and the flow rate flowrate and can be expressed as:

LaTeX Math Block
anchorJ
alignmentleft
J(_t) = \frac{q_t}{p_i - p_{wf}(t)} =\frac{ 42 \pi \sigma }{ 2S - F \bigg( -\ln \frac{r_w^2e}{4 \chi t} \bigg)  }
Expand
titleIsobar Propagation
r_w} + S} = {\rm const}


The Field-average Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed asIsobar equation for a constant-rate production:

LaTeX Math Block
anchorQ7VZXJ
alignmentleft
p(t,r)J_t = p_i + \frac{q_t}{4 \pi \sigma} \,  F \bigg(p_r(t) - \fracp_{r^2}{4 \chi twf}(t)} =\bigg) = {\rm const} \quad \rightarrow \quad \frac{r^2}{4 \chi t}= {\rm const} 
Since the pressure disturbance at 
LaTeX Math Inline
bodyt=0
 moment was at well walls 
LaTeX Math Inline
bodyr=r_w
 then the formula for constant-pressure front propagation becomes:
LaTeX Math Block
anchorH09BI
alignmentleft
r(t) = r_w + 2 \sqrt{\chi t}

This leads to estimation of isobar velocity:

LaTeX Math Block
anchorNX4O7
alignmentleft
u_p(t) = \sqrt{\frac{\chi}{t}}
frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + 0.5 +S} = {\rm const}


See Also

...

Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow / Pressure diffusion / Pressure Diffusion @model / Radial Flow Pressure Diffusion @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ] [ Pressure diffusion @model ][ Line Source Solution (LSS) @model ][ Linear Flow Pressure Diffusion @model ]

...

groupeditors

...

bgColorpapayawhip

...

titleEditor

but this only works for the middle-times and long-times as early times are influenced by wellbore storage and non-linear effects of skin.

...

titleDefinition

...

LaTeX Math Block
anchorA3E6X
alignmentleft
p(t,r) = p_i + \frac{q_t}{4 \pi \sigma} \,  {\rm Ei} \bigg( - \frac{r^2}{4 \chi t} \bigg)

...

LaTeX Math Inline
bodyh

...

LaTeX Math Inline
bodyr

...

LaTeX Math Inline
bodyr=0

...

LaTeX Math Inline
bodyp_i

...

LaTeX Math Inline
bodyt = 0

...

LaTeX Math Inline
bodyq_t

...

Диффузия давления описывается решением уравнения однофазного радиального течения в бесконечном однородном пласте:

LaTeX Math Block
anchorp_dif
alignmentleft
\frac{\partial p}{\partial t} = \chi \,  \Delta p = \chi \, \frac{1}{r} \frac{\partial}{\partial r} \bigg( r \frac{\partial p}{\partial r} \bigg)

с начальным условием:

LaTeX Math Block
anchorN0ZUD
alignmentleft
p(t = 0, r) = p_i

и граничными условиями:

LaTeX Math Block
anchorBUZLH
alignmentleft
p(t, r \rightarrow \infty ) = p_i
LaTeX Math Block
anchorBoundary_q
alignmentleft
r \frac{\partial p(t, x )}{\partial r} \bigg|_{r \rightarrow 0} = \frac{q_t}{2  \pi \sigma}

где 

LaTeX Math Inline
body\sigma = \frac{k \, h}{\mu}
 – гидропроводность пласта, 
LaTeX Math Inline
body\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}
 – пьезопроводность пласта, 
LaTeX Math Inline
bodyk
 – проницаемость пласта, 
LaTeX Math Inline
body\phi
 – пористость пласта, 
LaTeX Math Inline
bodyc_t = c_r + c
 – сжимаемость пласта, 
LaTeX Math Inline
bodyc_r
 – сжимаемость порового коллектора, 
LaTeX Math Inline
bodyc
 – сжимаемость насыщающего пласт флюида, 
LaTeX Math Inline
body\mu
 – вязкость насыщающего пласт флюида.

При анализе отклика давления на самой скважине ( 

LaTeX Math Inline
bodyr = r_w
 ) после включения на достаточно больших временах, удовлетворяющих условию:

LaTeX Math Block
anchorAF8JH
alignmentleft
t \gg \frac{r_w^2}{4 \chi}

которые на практике наступают очень быстро, можно воспользоваться приближением 

LaTeX Math Inline
body{\rm Ei}(-x) \sim \ln (x) + \gamma \sim \ln (1.781 x)
, где 
LaTeX Math Inline
body\gamma = 0.5772 ...
 – постоянная Эйлера. 

...

LaTeX Math Block
anchorOSWU0
alignmentleft
p(t,r_w) = p_i + \frac{q_t}{4 \pi \sigma} \,  \ln \bigg( 1.781 \, \frac{r_w^2}{4 \chi t} \bigg)

...

LaTeX Math Block
anchor21SAA
alignmentleft
\delta p = p_i - p_{wf}(t) \sim { \rm const } + \frac{q_t}{4 \pi \sigma} \,  \ln t

а логарифмическая производная становится постоянной во времени:

LaTeX Math Block
anchorOFRU1
alignmentleft
t \frac{d (\delta p)}{dt}  \sim \frac{q_t}{4 \pi \sigma}

...