Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Motivation

...


In many practical cases the reservoir fluid flow created by well is getting aligned with a radial direction towards or away from well.

This type of reservoir fluid flow is called radial fluid flow and corresponding pressure diffusion models provide a diagnostic basis for pressure-rate base reservoir flow analysis.

The radial flow can be infinite acting or boundary dominated or transiting from one to another.

Although the actual reservoir fluid flow may not have an axial symmetry around the well-reservoir contact or around reservoir inhomogeneities (like boundary and faults and composite areas) but still  in many practical cases the long-term correlation between the flowrate and bottom-hole pressure response can be approximated by a radial flow pressure modelthe Radial Flow Pressure Diffusion is evolving towards pressure stabilization and can be efficiently analyzed using the pseudo-steady state flow model.


Inputs & Outputs

...


InputsOutputs

LaTeX Math Inline
bodyq_t

total sandface rate

LaTeX Math Inline
bodyp(t,r)

reservoir pressure

LaTeX Math Inline
body{p_i}

initial formation pressure

LaTeX Math Inline
bodyp_{wf}(t)

well bottomhole pressure

LaTeX Math Inline
body\sigma

transmissibility,

LaTeX Math Inline
body\sigma = \frac{k \, h}{\mu}



LaTeX Math Inline
body\chi

pressure diffusivity,

LaTeX Math Inline
body\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}



LaTeX Math Inline
bodyS

skin-factor

LaTeX Math Inline
bodyr_w

wellbore radius

LaTeX Math Inline
bodyr_e

drainage radius


Expand
titleDetailing


LaTeX Math Inline
bodyk

absolute permeability

LaTeX Math Inline
bodyc_t

total compressibility,

LaTeX Math Inline
bodyc_t = c_r + c

LaTeX Math Inline
bodyh

effective thickness

LaTeX Math Inline
body{c_r}

pore compressibility

LaTeX Math Inline
body\mu

dynamic fluid viscosity

LaTeX Math Inline
bodyc

fluid compressibility

LaTeX Math Inline
body{\phi}

porosity




Physical Model

...

) \rightarrow p(r \rightarrow r_w = 0

Radial fluid flowHomogenous reservoirFinite reservoir flow boundarySlightly compressible fluid flowConstant rateConstant skin

LaTeX Math Inline
bodyp(t, {\bf r}

)

LaTeX Math Inline
body{\bf r} \in ℝ^2 = \{ x, y\}

LaTeX Math Inline
bodyM(r, p)=M =\rm const

LaTeX Math Inline
body\phi(r, p)=\phi =\rm const

LaTeX Math Inline
bodyh(r)=h =\rm const

LaTeX Math Inline
bodyc_r(r)=c_r =\rm const

LaTeX Math Inline
bodyr

_w \leq r \leq r_e < \infty

LaTeX Math Inline
body

body

LaTeX Math Inline

c_t(r,p) = \rm const

LaTeX Math Inline
bodyq_t = \rm const

LaTeX Math Inline
bodyS = \rm const


Mathematical Model

...


p_{wf}
Expand
titleDefinition



LaTeX Math Block
anchorE1
alignmentleft
r_{wf} < r \leq r_e




LaTeX Math Block
anchor52112
alignmentleft
\frac{\partial p}{\partial t}
= 
0
\
Leftrightarrow
chi \
,
left[ \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} 
=0
\right]



LaTeX Math Block
anchor3MUX9
alignmentleft
p(t,
\left[ \frac{\partial p}{\partial r} \
rightarrow \infty ) = p_i
right]_{r=r_e} = 0



LaTeX Math Block
anchor
EM415
E4
alignmentleft
\left[ r\frac{\partial p(t,
r
)}{\partial r} \right]_{r 
\rightarrow
= r_w} = \frac{q_t}{2 \pi \sigma}
Expand
titleSolution



LaTeX Math Block
anchor
p
3MUX9
alignmentleft
p_{wf}(
r
t)
= p
_i +
(t, r_w) - S \cdot \left[ r \frac{
q_t
\partial p(t,r)}{
4
\
pi
partial 
\sigma
r} \
, \ln \frac{r_e}{
right]_{r=r_w}
LaTeX Math Block
anchorpwf
alignmentleft
 = p
_i +
(t, r_w) - \frac{q_t}{
4
2 \pi \sigma} 
\, \bigg[ - 2S + 1 + \ln \frac{r_e}{r_w} \bigg]
S 




Noteexpand
titleDerivation

Applications

...

J(t) = \frac{q_t}{p_i - p_{wf}(t)} =\frac{ 4 \pi \sigma }{ 2S - F \bigg(
Pressure Drop
1EWTY
Disclaimer

It is important to note that equations

LaTeX Math Block Reference
anchor

...

E1

...

LaTeX Math Block Reference
anchor

...

LaTeX Math Inline
bodyF

...

E4
do not constitute a complete CVP as it does not specify the initial condition.


In case of infinite homogeneous reservoir, produced by a infinitely small vertical well with no skin and no wellbore storage the 

Expand
titleSolution



LaTeX Math Block
anchorpwf
Expand
titleLine Source Solution
LaTeX Math Inline
bodyF
 function has an exact analytical formula, given by exponential integral 
LaTeX Math Inline
bodyF(z) = {\rm Ei}_1 (z)
 (see Line Source Solution (LSS) @model).

Expand
titlePTA

PTA – Pressure Transient Analysis

The Productivity Index for single-phase low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottom-hole pressure and the flow rate and can be expressed as:

LaTeX Math Block
anchorJ
alignmentleft
LaTeX Math Block
anchor
alignmentleft
\delta p
p(t,r) = p_i - 
p_{wf}(t) \sim \ln
\frac{{\rm w \,}  q_t }{V_e \, \phi \, c_t} \, t + \frac{{\rm 
const}

Image Removed

Log derivative
LaTeX Math Block
anchorIBA4M
alignmentleft
t \frac{d (\delta p)}{dt}  \sim \rm const
Fig. 2. PTA Diagnostic plot for radial fluid flow
Expand
titleProductivity Index Analysis
w \,} q_t }{4\pi \sigma} \left[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} + 1 \right] 
 , \quad r_{wf} < r \leq r_e, 
\quad {\rm w }= 1 - \frac{r_w^2}{
4 \chi t} \bigg) } Expand
titleIsobar Propagation
Isobar equation for a constant-rate production:
r_e^2}




LaTeX Math Block
anchor
Q7VZX
pwf
alignmentleft
p_e(t
,r
) = p_i 
+
- \frac{{\rm w \,} q_t}{
4
V_e \
pi \sigma} \, F \bigg(
phi c_t}t





LaTeX Math Block
anchorpwf
alignmentleft
p_{wf}(t) = p_e(t) - \frac{
r^2
q_t}{
4
2 \
chi
pi 
t
\sigma} \
bigg) =
, \left[ {\rm 
const}
w\
quad
, 
\rightarrow
} \
quad
ln \frac{
r^2
r_e}{
4 \chi t}= {\rm const} Since the pressure disturbance at 
LaTeX Math Inline
bodyt=0
 moment was at well walls 
LaTeX Math Inline
bodyr=r_w
 then the formula for constant-pressure front propagation becomes:
LaTeX Math Block
anchorH09BI
alignmentleft
r(t) = r_w + 2 \sqrt{\chi t}

This leads to estimation of isobar velocity:

LaTeX Math Block
anchorNX4O7
alignmentleft
u_p(t) = \sqrt{\frac{\chi}{t}}

See Also

Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ] [ Pressure diffusion @model ][ Line Source Solution (LSS) @model ]

Linear Flow Pressure Diffusion @model ]

...

groupeditors

...

bgColorpapayawhip

...

titleEditor

but this only works for the middle-times and long-times as early times are influenced by wellbore storage and non-linear effects of skin.

...

titleDefinition

...

r_w}  + 0.5 + S \right]




Expand
titleDerivation



Approximations

...



LaTeX Math Block
anchor1
alignmentleft
{\rm w} = 1 - \frac{r_w^2}{r_e^2} \approx 1



LaTeX Math Block
anchorpwf

...

alignmentleft
p(t,r) 

...

\approx p_i 

...

- \frac{q_t}{

...

V_e \

...

, \

...

phi \, c_t} 

...

\

...

, t + \frac{q_t}{4\pi \sigma} \bigg[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} + 1 \bigg] 
 , \quad r_{wf} < r \leq r_e




LaTeX Math Block
anchorpwf
alignmentleft
p_{wf}(t) \approx p_e(t) - \frac{q_t}{2 \pi \sigma} \, \left[  \ln \frac{r_e}{r_w}  + 0.5 + S \right]



LaTeX Math Block
anchorpwf
alignmentleft
p_e(t) \approx p_i - \frac{q_t}{V_e \phi c_t}t



Applications

...


Equation  

LaTeX Math Block Reference
anchorpwf
 shows how the basic diffusion model parameters impact the relation between drawdown 
LaTeX Math Inline
body\Delta p = p_i - p_{wf}
 and total sandface flowrate 
LaTeX Math Inline
bodyq_t
 and plays important methodological role as they are used in many algorithms and express-methods of Pressure Testing.



Expand
titleProductivity Index Analysis


The Total Sandface Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

LaTeX Math Block
anchorJ
alignmentleft
J_t = \frac{q_t}{p_e(t) - p_{wf}(t)} =\frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + 0.5 +S} = {\rm const}


The Field-average Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

\delta p = p_i
 - p_{wf}(t)
\sim { \rm const
} 
+
=\frac{
q_t}{4
2 \pi \sigma}
{\
, \
ln 
t

а логарифмическая производная становится постоянной во времени:

t
\frac{
d (\delta p)}{dt} \sim \frac{q_t}{4 \pi \sigma}В лог-лог координатах лог-производная депрессии будет горизонтальной, что является характерным для радиальной фильтрации в бесконечном пласте.
r_e}{r_w} + 0.75 +S} = {\rm const}
LaTeX Math Block
anchorJ
alignmentleft
J_t = \frac{q_t}{p_r(t)
Ei} \bigg( - \frac{r^2}{4 \chi t} \bigg)Рассмотрим плоскопараллельный аксиально-симметричный однородный пласт постоянной толщины 
LaTeX Math Inline
bodyh
, с радиальной координатой 
LaTeX Math Inline
bodyr
 в перпендикулярной к оси скважины плоскости, который вскрыт бесконечно тонкой скважиной в точке 
LaTeX Math Inline
bodyr=0
 (где  – радиальная координата в перпендикулярной к оси скважине плоскости) и начальным пластовым давлением 
LaTeX Math Inline
bodyp_i
.
Пусть  в момент времени 
LaTeX Math Inline
bodyt = 0
 скважина запускается с дебитом 
LaTeX Math Inline
bodyq_t
 (в пересчете на пластовые условия).

Диффузия давления описывается решением уравнения однофазного радиального течения в бесконечном однородном пласте:

LaTeX Math Block
anchorp_dif
alignmentleft
\frac{\partial p}{\partial t} = \chi \,  \Delta p = \chi \, \frac{1}{r} \frac{\partial}{\partial r} \bigg( r \frac{\partial p}{\partial r} \bigg)

с начальным условием:

LaTeX Math Block
anchorN0ZUD
alignmentleft
p(t = 0, r) = p_i

и граничными условиями:

LaTeX Math Block
anchorBUZLH
alignmentleft
p(t, r \rightarrow \infty ) = p_i
LaTeX Math Block
anchorBoundary_q
alignmentleft
r \frac{\partial p(t, x )}{\partial r} \bigg|_{r \rightarrow 0} = \frac{q_t}{2  \pi \sigma}

где 

LaTeX Math Inline
body\sigma = \frac{k \, h}{\mu}
 – гидропроводность пласта, 
LaTeX Math Inline
body\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}
 – пьезопроводность пласта, 
LaTeX Math Inline
bodyk
 – проницаемость пласта, 
LaTeX Math Inline
body\phi
 – пористость пласта, 
LaTeX Math Inline
bodyc_t = c_r + c
 – сжимаемость пласта, 
LaTeX Math Inline
bodyc_r
 – сжимаемость порового коллектора, 
LaTeX Math Inline
bodyc
 – сжимаемость насыщающего пласт флюида, 
LaTeX Math Inline
body\mu
 – вязкость насыщающего пласт флюида.

При анализе отклика давления на самой скважине ( 

LaTeX Math Inline
bodyr = r_w
 ) после включения на достаточно больших временах, удовлетворяющих условию:

LaTeX Math Block
anchorAF8JH
alignmentleft
t \gg \frac{r_w^2}{4 \chi}

которые на практике наступают очень быстро, можно воспользоваться приближением 

LaTeX Math Inline
body{\rm Ei}(-x) \sim \ln (x) + \gamma \sim \ln (1.781 x)
, где 
LaTeX Math Inline
body\gamma = 0.5772 ...
 – постоянная Эйлера. 

Режим радиального течения к линейному источнику примет вид:
LaTeX Math Block
anchorOSWU0
alignmentleft
p(t,r_w) = p_i + \frac{q_t}{4 \pi \sigma} \,  \ln \bigg( 1.781 \, \frac{r_w^2}{4 \chi t} \bigg)
Отсюда следует, что уже вскоре после запуска скважины динамическая депрессия на пласт начинает логарифмически расти во времени:
LaTeX Math Block
anchor21SAA
alignmentleft
LaTeX Math Block
anchorOFRU1
alignmentleft


See Also

...

Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow / Pressure diffusion / Pressure Diffusion @model / Radial Flow Pressure Diffusion @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ]