Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


We start with reservoir pressure diffusion outside wellborethe reservoir flow continuity equation:

LaTeX Math Block
anchorrho_dif
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \sum_k \dot m_k(t) \cdot \delta({\bf r}-{\bf r}_k)

percolation model:

qk\int_{Gamma}} \,(p)u} \, d
LaTeX Math Block
anchor
uu
alignmentleft
{
\
bf u} = - M \cdot ( \nabla p - \rho
 \, {\bf 
g})

and the reservoir boundary flow condition:

Am_{\Gamma}(t)
LaTeX Math Block
anchorqGamma
alignmentleft
{\rm F}_{\Gamma}(p, {\bf 
u}) = 
0

where

LaTeX Math Inline
body\Sigma_k

well-reservoir contact of the 

LaTeX Math Inline
bodyk
-th well

LaTeX Math Inline
body--uriencoded--d %7B\bf \Sigma%7D

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

LaTeX Math Inline
body \dot m_k(t)

mass rate flowrate at 

LaTeX Math Inline
bodyk
-th well 
LaTeX Math Inline
body\dot m_k(t) = \rho(p) \cdot q_k(t)

LaTeX Math Inline
bodyq_k(t)

sandface flowrate at 

LaTeX Math Inline
bodyk
-th well 

LaTeX Math Inline
body\rho(p)

fluid density as function of reservoir fluid pressure 

LaTeX Math Inline
bodyp

...

LaTeX Math Block
anchorrhophi
alignmentleft
d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} +  \frac{d \rho }{\rho}  \right) 
= \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) 
= \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

where

LaTeX Math Inline
bodyc_t = с_\phi+ c

to arrive at:

LaTeX Math Block
anchorpre_filnal
alignmentleft
\rho \, \phi \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \sum_k \rho \, 
\sum_k
q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
LaTeX Math Block
anchor
qk
qGamma
alignmentleft
{\
int
rm F}_{
{
\Gamma}
} \
(p, {\bf u}
\, d {\bf A} = q_{\Gamma}(t)

where

...

LaTeX Math Inline
bodyc_t = с_\phi+ c

...

) = 0

The left-hand side of equation  

LaTeX Math Block Reference
anchorpre_filnal
 can be transformed in the following wayThen use the following equality:

LaTeX Math Block
anchornabla_rho
alignmentleft
\nabla \, ( \rho \, {\bf u}) =  \rho \, \nabla \, {\bf u} + (\nabla  \rho, \, {\bf u}) =  \rho \, \nabla \, {\bf u} + \frac{d\rho}{dp} \cdot (\nabla  p, \, {\bf u}) = \rho \, \nabla \, {\bf u} + \rho \, c \cdot (\nabla  p, \, {\bf u})

where 

LaTeX Math Inline
body--uriencoded--\displaystyle c(p) = \frac%7B1%7D%7B\rho%7D \frac%7Bd\rho%7D%7Bdp%7D
 is fluid compressibility.

By using the Dirac delta function property: 

LaTeX Math Inline
bodyf(x) \cdot \delta(x-x_0) = f(x_0) \cdot \delta(x-x_0)
 the right-hand side of equation  
LaTeX Math Block Reference
anchorpre_filnal
 can be transformed in the following way:

LaTeX Math Block
anchorright_hand_side
alignmentleft
\sum_k  \rho(p(t, {\bf r}))  \cdot q_k(t) \cdot \delta({\bf r}-{\bf r}_k) 
= \sum_k  \rho(p(t, {\bf r}_k)) \cdot  q_k(t) \cdot \delta({\bf r}-{\bf r}_k) 
 = \sum_k  \rho(p(t, {\bf r})) \cdot  q_k(t)  \cdot \delta({\bf r}-{\bf r}_k)  
= \rho(p) \cdot \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)


Substituting

LaTeX Math Block Reference
anchornabla_rho
 and
LaTeX Math Block Reference
anchorright_hand_side
 into
LaTeX Math Block Reference
anchorpre_filnal
 and reducing the density 
LaTeX Math Inline
body\rho(p)
 one arrives to:

LaTeX Math Block
anchorpre_filnal
alignmentleft
 \phi \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla  {\bf u}  
+ c \cdot ( {\bf u} \, \nabla p) =  \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
LaTeX Math Block
anchor
qk
qGamma
alignmentleft
{\
int
rm F}_{
{
\Gamma}
} \
(p, {\bf u}
\, d {\bf A} = q_{\Gamma}(t)
) = 0


See also

...

Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model

...