Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 13 Next »

Integral-average pressure over the drainage volume  V_e:

(1) p_r = \frac{1}{V_e} \iint_{A_e} p(x,y,z) dV

For the Steady State Radial Flow in finite reservoir the relationship between Boundary-average formation pressure  p_e and Field-average formation pressure  p_r is going to be:

(2) p_r = p_i - \frac{q_t}{4 \pi \sigma}


(3) V_e = \pi r_e^2 h, \quad dV = 2\pi r \, h dr
(4) p_r = \frac{1}{V_e} \int p(r) dV = \frac{2}{r_e^2} \int p(r) \, r \, dr

For the Steady State Radial Flow in finite reservoir the reservoir pressure is going to be:

(5) p(r) = p_i + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e} = p_{wf} + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_w} , \quad r_{wf} < r \leq r_e

and substituting the above to (4) and integrating:

(6) p_r = \frac{2}{r_e^2} \int \bigg[ p_i - \frac{q_t}{2\pi \sigma} \ln \frac{r}{r_w} \bigg] \, r \, dr = p_i - \frac{q_t}{4\pi \sigma}

See Also


Petroleum Industry / Upstream / Production / Subsurface Production / Well & Reservoir Management / Formation pressure (Pe)

Subsurface E&P Disciplines / Production Technology 

[Reservoir pressure] [Initial formation pressure, Pi] [Drilled formation pressure, Pd] [Startup formation pressure, P0] [ Multiphase formation pressure ]


  • No labels