Average reservoir pressure over the drainage volume
V_e:
(1) |
p_r = \frac{1}{V_e} \iint_{A_e} p(x,y,z) dV |
For the Steady State Radial Flow in finite reservoir the relationship between Boundary-average formation pressure
p_e and Drainarea formation pressure
p_r is going to be:
(2) |
p_r = p_i - \frac{q_t}{4 \pi \sigma} |
Derivation
(3) |
V_e = \pi r_e^2 h, \quad dV = 2\pi r \, h dr |
(4) |
p_r = \frac{1}{V_e} \int p(r) dV = \frac{2}{r_e^2} \int p(r) \, r \, dr |
For the Steady State Radial Flow in finite reservoir the reservoir pressure is going to be:
(5) |
p(t,r) = p_e(t) + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e} = p_i + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e} |
and substituting the above to
(4) and integrating:
(6) |
p_r = \frac{2}{r_e^2} \int \bigg[ p_i + \frac{q_t}{2\pi \sigma} \ln \frac{r}{r_e} \bigg] \, r \, dr = p_i - \frac{q_t}{4\pi \sigma} |
For the Pseudo-Steady State Radial Flow in finite reservoir the relationship between Boundary-average formation pressure
p_e and Drainarea formation pressure
p_r is going to be:
(7) |
p_r(t)= p_e(t) - 0.75 \cdot \frac{q_t}{2 \pi \sigma} |
Derivation
(8) |
V_e = \pi r_e^2 h, \quad dV = 2\pi r \, h dr |
(9) |
p_r = \frac{1}{V_e} \int p(r) dV = \frac{2}{r_e^2} \int p(r) \, r \, dr |
For the Pseudo-Steady State Radial Flow in finite reservoir the reservoir pressure is going to be:
(10) |
p(r) = p_i + \frac{q_t}{4 \pi \sigma} \, \left[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} \right] |
and substituting the above to
(4) and integrating:
(11) |
p_r(t) = \frac{2}{r_e^2} \int \bigg[ p_e(t) + \frac{q_t}{4\pi \sigma} \left[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} \right] \bigg] \, r \, dr = p_i - 0.75 \cdot \frac{q_t}{2\pi \sigma} |
Petroleum Industry / Upstream / Production / Subsurface Production / Well & Reservoir Management / Formation pressure (Pe)
Subsurface E&P Disciplines / Production Technology
[Reservoir pressure] [Initial formation pressure, Pi] [Drilled formation pressure, Pd] [Startup formation pressure, P0] [ Multiphase formation pressure ]