Page tree

Average reservoir pressure over the drainage volume  V_e:

(1) p_r = \frac{1}{V_e} \iint_{A_e} p(x,y,z) dV


For the Steady State Radial Flow in finite reservoir the relationship between Boundary-average formation pressure  p_e and Drainarea formation pressure  p_r is going to be:

(2) p_r = p_i - \frac{q_t}{4 \pi \sigma}
(3) V_e = \pi r_e^2 h, \quad dV = 2\pi r \, h dr
(4) p_r = \frac{1}{V_e} \int p(r) dV = \frac{2}{r_e^2} \int p(r) \, r \, dr

For the Steady State Radial Flow in finite reservoir the reservoir pressure is going to be:

(5) p(t,r) = p_e(t) + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e} = p_i + \frac{q_t}{2 \pi \sigma} \, \ln \frac{r}{r_e}

and substituting the above to (4) and integrating:

(6) p_r = \frac{2}{r_e^2} \int \bigg[ p_i + \frac{q_t}{2\pi \sigma} \ln \frac{r}{r_e} \bigg] \, r \, dr = p_i - \frac{q_t}{4\pi \sigma}


For the Pseudo-Steady State Radial Flow in finite reservoir the relationship between Boundary-average formation pressure  p_e and Drainarea formation pressure  p_r is going to be:

(7) p_r(t)= p_e(t) - 0.75 \cdot \frac{q_t}{2 \pi \sigma}
(8) V_e = \pi r_e^2 h, \quad dV = 2\pi r \, h dr
(9) p_r = \frac{1}{V_e} \int p(r) dV = \frac{2}{r_e^2} \int p(r) \, r \, dr

For the Pseudo-Steady State Radial Flow in finite reservoir the reservoir pressure is going to be:

(10) p(r) = p_i + \frac{q_t}{4 \pi \sigma} \, \left[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} \right]

and substituting the above to (4) and integrating:

(11) p_r(t) = \frac{2}{r_e^2} \int \bigg[ p_e(t) + \frac{q_t}{4\pi \sigma} \left[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} \right] \bigg] \, r \, dr = p_i - 0.75 \cdot \frac{q_t}{2\pi \sigma}


See Also


Petroleum Industry / Upstream / Production / Subsurface Production / Well & Reservoir Management / Formation pressure (Pe)

Subsurface E&P Disciplines / Production Technology 

[Reservoir pressure] [Initial formation pressure, Pi] [Drilled formation pressure, Pd] [Startup formation pressure, P0] [ Multiphase formation pressure ]


  • No labels