Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 11 Next »

Mathematical model of Capacitance Resistance Model (CRM)



CRM – Single-Tank Capacitance Resistance Model


The model equation is:

(1) q^{\uparrow}(t) = f \, q^{\downarrow}(t) - \tau \cdot \frac{ d q^{\uparrow}}{ dt } - \beta \cdot \frac{d p_{wf}}{dt}

where

q^{\uparrow}(t)

average surface production per well

q^{\downarrow}(t)

average surface injection per well

p_{wf}(t)

average bottomhole pressure in producers

f

unitless constant, showing the share of injection which actually contributes to production

\tau

time-measure constant, related to well productivity

\beta

storage-measure constant, related to dynamic drainage volume and total compressibility

The  \tau and  \beta constants are related to some primary well and reservoir characteristics:

(2) \beta = c_t \, V_\phi
(3) \tau = \frac{\beta}{J} = \frac{c_t V_\phi}{J}

where

c_t

total formation-fluid compressibility

V_\phi = \phi \, V_R

drainable reservoir volume

V_R

total rock volume within the drainage area

\phi

average effective reservoir porosity

J

total fluid productivity index

Total formation compressibility is a linear sum of reservoir/fluid components:

(4) c_t = c_r + s_w c_w + s_o c_w + s_g c_g

where

c_r

rock compressibility

c_w, \, c_o, \, c_g

water, oil, gas compressibilities

s_w, \, s_o, \, s_g

water, oil, gas formation saturations

The first assumption of CRM is that productivity index of producers stays constant in time:

(5) J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can re-written as explicit formula for formation pressure:

(6) p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)

The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

(7) V_\phi = V_{rocks} \phi = \rm const

The third assumption is that total formation-fluid compressibility stays constant in time:

(8) c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \rm const

which can be easily integrated:

(9) V_{\phi}(t) =V^\circ_{\phi} \cdot \exp \big[ - c_t \cdot [p_i - p_r(t)] \big]

where p_i is field-average initial formation pressure, V^\circ_{\phi} is initial drainage volume,


p_r(t) – field-average formation pressure at time moment t,

V_{\phi}(t) is drainage volume at time moment t.


(10) \frac{dV_{\phi}}{dp} = c_t \, V_{\phi} \ \cdot

The change in drainage volume dV_{\phi} is leading to formation pressure variation

(11) c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \frac{1}{V_{\phi}} \cdot \frac{1}{p_i - p_r(t) } \cdot \Bigg[ \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau \Bigg] = \rm const


The last equation can be rewritten as:

(12) \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

(13) q_{\uparrow}(\tau) = f q_{\downarrow}(\tau) - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and substituting p_r(t) from productivity equation (6):

(14) q_{\uparrow}(\tau) = f q_{\downarrow}(\tau) - c_t \, V_\phi \, \bigg[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \bigg]

which leads to (1).


The objective function is:

(15) E[\tau, \beta, f] = \sum_k \big[ q^{\uparrow}(t_k) - \tilde q^{\uparrow}(t_k) \big]^2 \rightarrow \min

The constraints are:

(16) \tau \geq 0 , \quad \beta \geq 0, \quad 0 \leq f \leq 1

CRMP – Multi-tank Producer-based Capacitance Resistance Model


The model equation is:

(17) q^{\uparrow}_j (t) = \sum_i^{n_i} f_{ij} q^{\downarrow}_i(t) - \tau_j \cdot \frac{ d q^{\uparrow}_j}{ dt } - \beta_j \cdot \frac{d p_j}{dt}

The objective function is:

(18) E[\tau, \beta, f] = \sum_k \sum_j \big[ q^{\uparrow}_j(t_k) - \tilde q^{\uparrow}_j(t_k) \big]^2 \rightarrow \min

The constraints are:

(19) \tau_j \geq 0 , \quad \beta_j \geq 0, \quad f_{ij} \geq 0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1

ICRM  – Multi-Tank Integrated Capacitance Resistance Model


The model equation is:

(20) Q^{\uparrow}_j (t) = \sum_i^{n_i} f_{ij} Q^{\downarrow}_i(t) - \tau_j \cdot \big[ q^{\uparrow}_j(t) - q^{\uparrow}_j(0) \big] - \beta_j \cdot \big[ p_j(t) - p_j(0) \big]

The objective function is:

(21) E[\tau, \beta, f] = \sum_k \sum_j \big[ Q^{\uparrow}_j(t_k) - \tilde Q^{\uparrow}_j(t_k) \big]^2 \rightarrow \min

The constraints are:

(22) \tau_j \geq 0 , \quad \beta_j \geq 0, \quad f_{ij} \geq 0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM)



References



https://doi.org/10.2118/147344-MS

https://doi.org/10.2118/177106-MS


  • No labels