Page tree

Mathematical model of Capacitance Resistance Model (CRM)



CRM – Single-Injector Capacitance Resistance Model


The model equation is:

(1) q^{\uparrow}(t) + \tau \cdot \frac{ d q^{\uparrow}}{ dt } = f \cdot q^{\downarrow}(t) - \gamma \cdot \frac{d p_{wf}}{dt}

where

q^{\uparrow}(t)

average surface production per well

q^{\downarrow}(t)

average surface injection per well

p_{wf}(t)

average bottomhole pressure in producers

f

unitless constant, showing the share of injection which actually contributes to production

\tau

time-measure constant, related to well productivity

\gamma

Reservoir Storage


The  \tau and  \gamma constants are related to some primary well and reservoir properties:

(2) \gamma = c_t \, V_\phi
(3) \tau = \frac{\gamma}{J} = \frac{c_t V_\phi}{J}

where

c_t

total formation-fluid compressibility

V_\phi = \phi \, V_R

drainable reservoir volume

V_R

total rock volume within the drainage area

\phi

average effective reservoir porosity

J

total fluid productivity index


Total formation compressibility is a linear sum of reservoir/fluid components:

(4) c_t = c_r + s_w c_w + s_o c_w + s_g c_g

where

c_r

rock compressibility

c_w, \, c_o, \, c_g

water, oil, gas compressibilities

s_w, \, s_o, \, s_g

water, oil, gas formation saturations



The first assumption of CRM is that productivity index of producers stays constant in time:

(5) J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can be re-written as explicit formula for formation pressure:

(6) p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

(7) V_\phi = V_r \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

(8) c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \rm const

which can be easily integrated:

(9) V_{\phi}(t) =V^\circ_{\phi} \cdot \exp \big[ - c_t \cdot [p_i - p_r(t)] \big]

where p_i is field-average initial formation pressure, V^\circ_{\phi} is initial drainage volume,


p_r(t) – field-average formation pressure at time moment t,

V_{\phi}(t) is drainage volume at time moment t.


Equation (8) can be rewritten as:

(10) dV_{\phi} = c_t \, V_{\phi} \, dp


The dynamic variations in drainage volume dV_{\phi} are due to production/injection:

(11) dV_{\phi}= \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau

and leading to corresponding formation pressure variation:

(12) dp = p_i - p_r(t)

thus making (10) become:

(13) \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

(14) q_{\uparrow}(\tau) = f q_{\downarrow}(\tau) - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and substituting p_r(t) from productivity equation (6):

(15) q_{\uparrow}(\tau) = f q_{\downarrow}(\tau) - c_t \, V_\phi \, \left[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \right]

which leads to (1).


The equation  (1) can be integrated explicitly:

(16) q^{\uparrow} (t) =\exp(-t/\tau) \cdot \left[ \ q^{\uparrow} (0) + \tau^{-1} \cdot \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) - \gamma \frac{dp}{ds} \right] ds \ \right]

and written in equivalent form:

(17) q^{\uparrow} (t) =\exp(-t/\tau) \cdot \left[ \ q^{\uparrow} (0) + \tau^{-1} \gamma \cdot \big( p(0) - p(t) \cdot \exp(t/\tau) \big) +\tau^{-1} \cdot \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) + \gamma \cdot p(s) \right] ds \ \right]


The 
objective function is:

(18) E[\tau, \gamma, f] = \sum_k \big[ q^{\uparrow}(t_k) - \tilde q^{\uparrow}(t_k) \big]^2 \rightarrow \min


The basic constraints are:

(19) \tau \geq 0 , \quad \gamma \geq 0, \quad f \geq 0


The additional constraints may be imposed as:

(20) f \leq 1

which means that a part of injection ( 1 - f) is going away from the reservoir drained by producer.

CRMP – Multi-Injector Capacitance Resistance Model


The model equation is:

(21) q^{\uparrow}_n (t) + \tau_n \cdot \frac{ d q^{\uparrow}_n}{ dt }= \sum_m f_{nm} \cdot q^{\downarrow}_m(t) - \gamma_n \cdot \frac{d p_n}{dt}


This equation can be integrated explicitly:

(22) q^{\uparrow}_n (t) =\exp(-t/\tau_n) \cdot \left[ \ q^{\uparrow}_n (0) + \tau_n^{-1} \cdot \int_0^t \exp(s/\tau_n) \left[ \sum_m f_{nm} \cdot q^{\downarrow}_m(s) - \gamma_n \frac{dp_n}{ds} \right] ds \right]


The objective function is:

(23) E[\tau_n, \gamma_n, f_{nm}] = \sum_k \sum_n \big[ q^{\uparrow}_n(t_k) - \tilde q^{\uparrow}_n(t_k) \big]^2 \rightarrow \min


The constraints are:

(24) \tau_n \geq 0 , \quad \gamma_n \geq 0, \quad f_{nm} \geq 0 , \quad \sum_i^{N^{\uparrow}} f_{nm} \leq 1

ICRM  – Integrated Multi-Injector Capacitance Resistance Model


The model equation is:

(25) Q^{\uparrow}_n (t) = \sum_n f_{nm} Q^{\downarrow}_n(t) - \tau_n \cdot \big[ q^{\uparrow}_n(t) - q^{\uparrow}_n(0) \big] - \gamma_n \cdot \big[ p_n(t) - p_n(0) \big]


The objective function is:

(26) E[\tau_n, \gamma_n, f_{nm}] = \sum_k \sum_n \big[ Q^{\uparrow}_n(t_k) - \tilde Q^{\uparrow}_n(t_k) \big]^2 \rightarrow \min


The constraints are:

(27) \tau_j \geq 0 , \quad \gamma_n \geq 0, \quad f_{ij} \geq 0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1


QCRM  – Liquid-Control Multi-Injector  Capacitance Resistance Model


The model equation is:

(28) p_n(t) = p_n(0) - \tau_n / \gamma_n \cdot \big[ q^{\uparrow}_n(t) - q^{\uparrow}_n(0) \big] - \gamma_n^{-1} \cdot Q^{\uparrow}_n (t) + \gamma_n^{-1} \cdot \sum_m f_{nm} \ Q^{\downarrow}_m(t)


The objective function is:

(29) E[\tau_n, \gamma_n, f_{nm}] = \sum_k \sum_n \big[ p_n(t_k) - \tilde p_n(t_k) \big]^2 \rightarrow \min


The constraints are:

(30) \tau_n \geq 0 , \quad \gamma_n \geq 0, \quad f_{nm} \geq 0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1, \quad p_{nr}(0) > 0


where

(31) p_{nr}(0) = p_n(0) + (\tau_n / \gamma_n) \cdot q^{\uparrow}_n(0)

is the initial formation pressure.

The equation (28) can be re-written with explicit form of initial formation pressure:

(32) p_n(t) = p_{nr}(0) + (\tau_n / \gamma_n) \cdot q^{\uparrow}_n(t) + \gamma_n^{-1} \cdot \sum_m f_{nm} \ Q_m^{\downarrow}(t)

where Q_m could be both producer Q_m^{\uparrow} or injector Q_m^{\downarrow}.


If 
p_{nr}(0) is known then it can be fixed during the search loop which normally improves the quality of future production forecasts.


XCRM  – Liquid-Control Cross-well Capacitance Resistance Model


Some extensions to conventional CRM model can be found in XCRM – Liquid-Control Cross-well Capacitance Resistance Model @model.


ELPM  – Explicit Linear Production Model

Some extensions to conventional CRM model can be found in Explicit Linear Production Model


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM)

Production – Injection Pairing @ model

[ Slightly compressible Material Balance Pressure @model ]

References




  • No labels