Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
LaTeX Math Block
anchorU4ZVJ
alignmentleft
p_{e,n} \ (t) = p_{i,n} \ (0) + \gamma_n^{-1} \cdot  \sum_m \left(  Q^{\uparrow}_{nm} +  Q^{\downarrow}_{nm} \ \right)
LaTeX Math Block
anchor0ZO49
alignmentleft
p_{{\rm wf}, n} \ \ \ (t) = p_e \ (t) + 0.5 \, \left[  q_O(t)/J_{On}   + f_{nn} \cdot q_W(t)/ J_{Wn}   \right]
LaTeX Math Block
anchor71T0D
alignmentleft
Q^{\uparrow}_{nm} \ =  

\ - \ f^{\uparrow}_{O,nm} \ \cdot B_{ob} \cdot  \, Q^{\uparrow}_O   

\ - \ f^{\uparrow}_{G,nm} \ \cdot B_{go} \cdot Q^{\uparrow}_G 

\ - \ f^{\uparrow}_{W,nm} \ \cdot B_w \cdot Q^{\uparrow}_W 


LaTeX Math Block
anchorYF7FO
alignmentleft
Q^{\downarrow}_{nm} \ = 

f^{\downarrow}_{G,nm} \ \cdot B_{go} \cdot Q^{\downarrow}_G 

\ + \ f^{\downarrow}_{W,nm} \ \cdot B_w \cdot Q^{\downarrow}_W

\ + \ B_{go} \cdot Q^{\downarrow}_{GCAP} \    

\ + \ B_w \cdot Q^{\downarrow}_{WAQ} 



LaTeX Math Block
anchorIKI6E
alignmentleft
Q_m(t) =  \int_0^t q_m(t) \, dt
LaTeX Math Block
anchorIKI6E
alignmentleft
B_{og} = \frac{B_o - R_s \, B_g}{1- R_s \, R_v}
LaTeX Math Block
anchorIKI6E
alignmentleft
B_{go} = \frac{ B_g - R_v \, B_o}{1- R_s \, R_v}

where 

LaTeX Math Inline
bodyB_o, \, B_g, \, B_w, \, R_s, \, R_v
 are Dynamic fluid properties.


The value of cumulative Gas Cap influx 

LaTeX Math Inline
body--uriencoded--Q%5e%7B\downarrow%7D_%7BGCAP%7D
 is modelled as in Gas Cap Drive @model.

The value of cumulative Aquifer influx 

LaTeX Math Inline
body--uriencoded--Q%5e%7B\downarrow%7D_%7BGCAP%7D
 is modelled as in Aquifer Drive Models (most popular being Carter-Tracy model for infinite-volume aquifer and Fetkovich for finite-volume aquifer).


In case of Water Injector 

LaTeX Math Inline
body--uriencoded-- s_%7Bo,n%7D = s_%7Bor%7D \ , \quad s_%7Bg,n%7D = 0 \ , \quad s_%7Bw,n%7D = 1 - s_%7Bor%7D
.

In case of Gas Injector:

LaTeX Math Inline
body--uriencoded-- s_%7Bo,n%7D = 0 \ , \quad s_%7Bg,n%7D = 1 - s_%7Bwcg%7D \ , \quad s_%7Bw,n%7D = s_%7Bwcg%7D
.


The objective function is:

LaTeX Math Block
anchorM6YDS
alignmentleft
E[ \ \tau_n, \gamma_n, f_{nm} \ ] = \sum_n {\rm w}_k \sum_k  \left[ {\rm w}_e \cdot \left( p_{e,n} \ \ (t_k) - \tilde p_{e,n} \ \ (t_k) \right)^2  

+ {\rm w}_{\rm wf} \ \ \cdot \left( p_{{\rm wf},n} \ \ (t_k) - \tilde p_{{\rm wf},n} \ \ (t_k) \right)^2  \right]   \rightarrow \min 

where 

LaTeX Math Inline
body--uriencoded--%7B\rm w%7D_e + %7B\rm w%7D_%7B\rm wf%7D = 1
 are the weight coefficients for formation pressure and bottom-hole pressure correspondingly

and

LaTeX Math Inline
body--uriencoded--%7B\rm w%7D_k = %7B\rm w%7D(t_k)
 are the the weight coefficients for time (usually the weight of the later times is higher than that for early times). 


The constraints are:

LaTeX Math Block
anchor68SFL
alignmentleft
J_n \geq  0 ,  \quad \gamma_n \geq 0,  \quad f_{nm} \ \geq  0 , \quad \sum_m f^{\uparrow}_{O, nm} \ \leq 1 , \quad \sum_m f^{\uparrow}_{G, nm} \ \leq 1, \quad \sum_m f^{\downarrow}_{W, nm} \ \leq 1, \quad \sum_m f^{\downarrow}_{G, nm} \ \leq 1


Normally, the initial formation pressure at datum is the same for all wells: 

LaTeX Math Inline
body--uriencoded-- p_%7Bi,n%7D(0) = p_i = %7B\rm const%7D, \ \forall n
.


The value of 

LaTeX Math Inline
body\gamma_n
 can be linked to the Dynamic drainage volume of a well
LaTeX Math Inline
body--uriencoded--V_%7B\phi, n%7D
 as:

LaTeX Math Block
anchorIKI6E
alignmentleft
\gamma_n = c_{t,n} \cdot V_{\phi, n} = (c_r + s_{w,n} \cdot c_w + s_{o,n} \cdot c_o + s_{g,n} \cdot c_g) \cdot  \phi_n \cdot V_n
LaTeX Math Block
anchorIKI6E
alignmentleft
s_{w,n} + s_{o,n} + s_{g,n} = 1


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM)

[ Capacitance-Resistivity Model (CRM) @model ][ Slightly compressible Material Balance Pressure @model ]

[ Dynamic fluid properties ]