Page tree


The  XCRM model predicts the  formation pressure p_{e,n} and bottom-hole pressure p_{wf,n} in the n-th oil producer in response to:

  • its current oil/water production rate \left( q^{\uparrow}_{On}, \ q^{\uparrow}_{Wn} \right)
  • its cumulative oil/water production \left( Q^{\uparrow}_{On}, \ Q^{\uparrow}_{Wn} \right)
  • cumulative oil/water production from the offset wells \left( Q^{\uparrow}_{Om}, \ Q^{\uparrow}_{Wm} \right)_{m \neq n \, \in \uparrow}
  • cumulative water injection in the offset wells \left( Q^{\downarrow}_{Om}, \ Q^{\downarrow}_{Wm} \right)_{m \in \downarrow}

using the following equations:

(1) P_{\Psi} \left[ p_{e,n} \ (t) \right] = P_{\Psi} \left[ p_{i,n} \ (0) \right] + \gamma_n^{-1} \cdot \left[ B_{og} \cdot Q^{\uparrow}_{O,nn} + f^{\uparrow}_{W,nn} \cdot B_w \cdot Q^{\uparrow}_{W,n} + \sum_{m \neq n} Q^{\uparrow}_{nm} + \sum_k Q^{\downarrow}_{nk} \right]
(2) p_{{\rm wf}, n} \ \ \ (t) = p_e \ (t) + 0.5 \cdot J_{On}^{-1} \cdot \left[  q^{\uparrow}_{On}(t) + f^{\uparrow}_{W,nn} \cdot \frac{\mu_W}{\mu_O} \cdot \frac{k_{ro}(s_{w,n})}{k_{rw}(s_{w,n})} \cdot q^{\uparrow}_{Wn}(t) \right]
(3) s_{w,n} = \left[ 1 + \frac{B_o}{B_w} \cdot \frac{q^{\uparrow}_{On}}{f^{\uparrow}_{W,nn} \cdot q^{\uparrow}_{Wn}} \right]^{-1}
(4) Q(t) = \int_0^t q(t) \, dt
(5) Q^{\uparrow}_{nm} \ = \ - \ f^{\uparrow}_{O,nm} \ \cdot B_{ob} \cdot \, Q^{\uparrow}_{O,m}   \ - \ f^{\uparrow}_{G,nm} \ \cdot B_{go} \cdot Q^{\uparrow}_{G,m} \ - \ f^{\uparrow}_{W,nm} \ \cdot B_w \cdot Q^{\uparrow}_{W,m}
(6) Q^{\downarrow}_{nk} \ = f^{\downarrow}_{G,nk} \ \cdot B_{go} \cdot Q^{\downarrow}_{G,k} \ + \ f^{\downarrow}_{W,nk} \ \cdot B_w \cdot Q^{\downarrow}_{W,k} \ + \ B_{go} \cdot Q^{\downarrow}_{GCAP,k} \ \ + \ B_w \cdot Q^{\downarrow}_{WAQ,k}
(7) B_{og} = \frac{B_o - R_s \, B_g}{1- R_s \, R_v}
(8) B_{go} = \frac{ B_g - R_v \, B_o}{1- R_s \, R_v}


where  B_o, \, B_g, \, B_w, \, R_s, \, R_v are Dynamic fluid properties and P_{\Psi} [] is Normalized Pseudo-Pressure .


The value of cumulative Gas Cap influx  Q^{\downarrow}_{GCAP} is modelled as in Gas Cap Drive @model.

The value of cumulative Aquifer influx  Q^{\downarrow}_{GCAP} is modelled as in Aquifer Drive Models (most popular being Carter-Tracy model for infinite-volume aquifer and Fetkovich for finite-volume aquifer).


In case of Water Injector  s_{o,n} = s_{or} \ , \quad s_{g,n} = 0 \ , \quad s_{w,n} = 1 - s_{or}.

In case of Gas Injector: s_{o,n} = 0 \ , \quad s_{g,n} = 1 - s_{wcg} \ , \quad s_{w,n} = s_{wcg}.


The history match objective function is:

(9) E[ \ \tau_n, \gamma_n, f_{nm} \ ] = \sum_n {\rm w}_k \sum_k \left[ {\rm w}_e \cdot \left( p_{e,n} \ \ (t_k) - \tilde p_{e,n} \ \ (t_k) \right)^2 + {\rm w}_{\rm wf} \ \ \cdot \left( p_{{\rm wf},n} \ \ (t_k) - \tilde p_{{\rm wf},n} \ \ (t_k) \right)^2 \right] \rightarrow \min

where  {\rm w}_e + {\rm w}_{\rm wf} = 1 are the weight coefficients for formation pressure and bottom-hole pressure correspondingly

and {\rm w}_k = {\rm w}(t_k) are the the weight coefficients for time (usually the weight of the later times is higher than that for early times). 


The constraints are:


J_n \geq 0

productivity is a positive number

\gamma_n \geq 0

drainage volume is a positive number

f_{nm} \ \geq 0

interference coefficients are all positive numbers

0 \leq f_{W,nn} \leq 1

total water production from a given well is a sum of good water and bad water  and as such the  good water share is always less or equal to one

\sum_m f^{\uparrow}_{O, nm} \ \leq 1


\sum_m f^{\uparrow}_{G, nm} \ \leq 1


\sum_m f^{\downarrow}_{W, nm} \ \leq 1


\sum_m f^{\downarrow}_{G, nm} \ \leq 1



Normally, the initial formation pressure at datum is the same for all wells:  p_{i,n}(0) = p_i = {\rm const}, \ \forall n.


The value of  \gamma_n can be linked to the Dynamic drainage volume of the n-th producer V_{\phi, n} as:

(10) \gamma_n = c_{t,n} \cdot V_{\phi, n} = (c_r + s_{w,n} \cdot c_w + s_{o,n} \cdot c_o + s_{g,n} \cdot c_g) \cdot  \phi_n \cdot V_n
(11) s_{w,n} + s_{o,n} + s_{g,n} = 1


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM) / Capacitance-Resistivity Model (CRM) @model

[ Slightly compressible Material Balance Pressure @model ]

[ Dynamic fluid properties ]




  • No labels