The  XCRM model predicts the  formation pressure and bottom-hole pressure in the -th oil producer in response to:

using the following equations:

P_{\Psi} \left[ p_{e,n} \ (t) \right] = P_{\Psi} \left[ p_{i,n} \ (0) \right] + \gamma_n^{-1} \cdot \left[ 
B_{og} \cdot Q^{\uparrow}_{O,nn} + f^{\uparrow}_{W,nn} \cdot B_w \cdot Q^{\uparrow}_{W,n} + \sum_{m \neq n}  Q^{\uparrow}_{nm} + \sum_k  Q^{\downarrow}_{nk}  \right]
p_{{\rm wf}, n} \ \ \ (t) = p_e \ (t) + 0.5 \cdot J_{On}^{-1} \cdot \left[  q^{\uparrow}_{On}(t)   + f^{\uparrow}_{W,nn} \cdot \frac{\mu_W}{\mu_O} \cdot \frac{k_{ro}(s_{w,n})}{k_{rw}(s_{w,n})} \cdot q^{\uparrow}_{Wn}(t)   \right]
s_{w,n} = \left[ 1 + \frac{B_o}{B_w} \cdot \frac{q^{\uparrow}_{On}}{f^{\uparrow}_{W,nn} \cdot q^{\uparrow}_{Wn}}  \right]^{-1}
Q(t) =  \int_0^t q(t) \, dt
Q^{\uparrow}_{nm} \ =  

\ - \ f^{\uparrow}_{O,nm} \ \cdot B_{ob} \cdot  \, Q^{\uparrow}_{O,m}   

\ - \ f^{\uparrow}_{G,nm} \ \cdot B_{go} \cdot Q^{\uparrow}_{G,m} 

\ - \ f^{\uparrow}_{W,nm} \ \cdot B_w \cdot Q^{\uparrow}_{W,m} 

Q^{\downarrow}_{nk} \ = 

f^{\downarrow}_{G,nk} \ \cdot B_{go} \cdot Q^{\downarrow}_{G,k} 

\ + \ f^{\downarrow}_{W,nk} \ \cdot B_w \cdot Q^{\downarrow}_{W,k}

\ + \ B_{go} \cdot Q^{\downarrow}_{GCAP,k} \    

\ + \ B_w \cdot Q^{\downarrow}_{WAQ,k} 
B_{og} = \frac{B_o - R_s \, B_g}{1- R_s \, R_v}
B_{go} = \frac{ B_g - R_v \, B_o}{1- R_s \, R_v}


where  are Dynamic fluid properties and  is Normalized Pseudo-Pressure .


The value of cumulative Gas Cap influx  is modelled as in Gas Cap Drive @model.

The value of cumulative Aquifer influx  is modelled as in Aquifer Drive Models (most popular being Carter-Tracy model for infinite-volume aquifer and Fetkovich for finite-volume aquifer).


In case of Water Injector .

In case of Gas Injector: .


The history match objective function is:

E[ \ \tau_n, \gamma_n, f_{nm} \ ] = \sum_n {\rm w}_k \sum_k  \left[ {\rm w}_e \cdot \left( p_{e,n} \ \ (t_k) - \tilde p_{e,n} \ \ (t_k) \right)^2  

+ {\rm w}_{\rm wf} \ \ \cdot \left( p_{{\rm wf},n} \ \ (t_k) - \tilde p_{{\rm wf},n} \ \ (t_k) \right)^2  \right]   \rightarrow \min 

where  are the weight coefficients for formation pressure and bottom-hole pressure correspondingly

and  are the the weight coefficients for time (usually the weight of the later times is higher than that for early times). 


The constraints are:


productivity is a positive number

drainage volume is a positive number

interference coefficients are all positive numbers

total water production from a given well is a sum of good water and bad water  and as such the  good water share is always less or equal to one






Normally, the initial formation pressure at datum is the same for all wells: .


The value of  can be linked to the Dynamic drainage volume of the n-th producer  as:

\gamma_n = c_{t,n} \cdot V_{\phi, n} = (c_r + s_{w,n} \cdot c_w + s_{o,n} \cdot c_o + s_{g,n} \cdot c_g) \cdot  \phi_n \cdot V_n
s_{w,n} + s_{o,n} + s_{g,n} = 1


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM) / Capacitance-Resistivity Model (CRM) @model

[ Slightly compressible Material Balance Pressure @model ]

[ Dynamic fluid properties ]