Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The common model of Hydraulic Fracture Permeability is based on Cozeny-Karman permeability @model:

LaTeX Math Block
anchor

...

CK
alignmentleft
k

...

 = 

...

1014.24 \cdot {\

...

rm FZI}^2 \cdot \frac{(\phi_f -\phi_{f0})^3}{( 1 - \phi_f+\phi_{f0})^2}
LaTeX Math Block
anchorFZI
alignmentleft
{\rm FZI} = \frac{1}{\sqrt{F_S} \, S_{gV} \, \tau }

where

LaTeX Math Inline
body--uriencoded--%7B\rm FZI%7D

Flow Zone Indicator

LaTeX Math Inline
body--uriencoded--S_%7BgV%7D = \Sigma_e/V_\phi

surface pore area per unit pore volume

LaTeX Math Inline
body\Sigma_e

pore surface area

LaTeX Math Inline
body\phi_f

fracture porosity

LaTeX Math Inline
bodyF_S

pore shape factor

LaTeX Math Inline
bodyV_\phi

pore volume

LaTeX Math Inline
body--uriencoded--\phi_%7Bf0%7D

LaTeX Math Inline
body\tau

pore channel tortuosity


In case of proppant-filled fracture the Flow Zone Indicator can be approximated as:

LaTeX Math Block
anchork_CZ
alignmentleft
{\rm FZI} \approx 0.0037 \cdot \frac{d}{\tau }

where

LaTeX Math Inline
bodyd_f

proppant average grain size

LaTeX Math Inline
body\tau_f

fracture  pore channel tortuosity


For the fluid-filled fracture the Flow Zone Indicator can be approximated as:

LaTeX Math Block
anchork_CZ
alignmentleft
{\rm FZI} = \frac{w_f}{2 \, \sqrt{F_S}}
LaTeX Math Block
anchork_CZ
alignmentleft
F_S \approx 3 \cdot 10^{-6} \, \frac{\phi_{fo}^2}{(1-\phi{f0})^3}

which leads to simple correlation for fracture permeability:

LaTeX Math Block
anchorVKSQD
alignmentleft
k_f =  84 \cdot 10^6 w_f^2


See Also

...

Petroleum Industry / Upstream / Well / Well-Reservoir Contact (WRC)  / Hydraulic Fracture