Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


A proxy model of watercut YW in producing well with reservoir saturation 

LaTeX Math Inline
bodys=\{ s_w, \, s_o, \, s_g \}
 and reservoir pressure
LaTeX Math Inline
bodyp_e
:

LaTeX Math Block
anchorFF
alignmentleft
{\rm Y_{Wm}} = \frac{1  - \epsilon_g}{1 + \frac{M_{ro}}{M_{rw}}  \cdot \frac{B_w}{B_o} }, \quad \epsilon_g = \frac{A}{q_t} \cdot M_{ro} \cdot \left[ \frac{\partial P_c}{\partial r}  +  (\rho_w-\rho_o) \cdot g \cdot \sin \alpha \right]

where

LaTeX Math Inline
bodyB_w(p_e)

Water formation volume factor

LaTeX Math Inline
bodyB_o(p_e)

Oil formation volume factor

LaTeX Math Inline
bodys

Reservoir saturation

LaTeX Math Inline
body\{ s_w, \, s_o, \, s_g \}

LaTeX Math Inline
bodyM_{rw}(s)

Relative water mobility

LaTeX Math Inline
bodyM_{ro}(s)

Relative oil mobility

LaTeX Math Inline
bodyp_e

Current formation pressure

LaTeX Math Inline
body\rho_w

Water density

LaTeX Math Inline
body\rho_o

Oil density

LaTeX Math Inline
bodyg

Standard gravity constant

LaTeX Math Inline
bodyq_t

Total sandface flowrate 

LaTeX Math Inline
bodyA

Cross-sectional flow area

LaTeX Math Inline
body\alpha

Deviation of flow from horizontal plane

LaTeX Math Inline
bodyP_c(s)

capillary pressure




If capillary effects are not high 

LaTeX Math Inline
bodyP_c \rightarrow 0
or saturation does not vary along the streamline substantially 
LaTeX Math Inline
body\displaystyle \frac{\partial s_w}{\partial r} \rightarrow 0
, then 
LaTeX Math Inline
body\displaystyle \frac{\partial P_c}{\partial r} = \dot P_c \cdot \frac{\partial s_w}{\partial r} \approx 0
.

If flow is close to horizontal 

LaTeX Math Inline
body\sin \alpha \rightarrow 0
then gravity effects are vanishing too: 
LaTeX Math Inline
body(\rho_w-\rho_o) \cdot g \cdot \sin \alpha \approx 0
.

In these cases  

LaTeX Math Block Reference
anchorFF
 simplifies to:

LaTeX Math Block
anchorYwsimple
alignmentleft
{\rm Y_{Wm}} = \frac{1}{1 + \frac{M_{ro}}{M_{rw}}  \cdot \frac{B_w}{B_o} } = \frac{1}{1 + \frac{k_{ro}}{k_{rw}}  \cdot \frac{\mu_w }{\mu_o } \cdot \frac{B_w}{B_o}}


The models 

LaTeX Math Block Reference
anchorFF
 and 
LaTeX Math Block Reference
anchorYwsimple
can also be used in production analysis assuming homogeneous reservoir water saturation
LaTeX Math Inline
bodys_w

LaTeX Math Block
anchorJUML4
alignmentleft
s_w(t) = s_{wi} + (1-s_{wi}) \cdot \rm E_{Dow}(t) = s_{wi} + (1-s_{wi}) \cdot \rm RFO(t)/E_S

where

LaTeX Math Inline
body\displaystyle {\rm RFO} = \frac{Q^{\uparrow}_O}{V_{\rm STOIIP}}


current oil recover factor

LaTeX Math Inline
bodyQ^{\uparrow}_O

cumulative oil production

LaTeX Math Inline
bodyV_{\rm STOIIP}

STOIIP

LaTeX Math Inline
bodyE_S

sweep efficiency

LaTeX Math Inline
bodys_{wi}

initial water saturation

LaTeX Math Inline
bodys_{orw}

residual oil saturation to water sweep



See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing (WT) / Flowrate Testing / Flowrate  / Production Water cut (Yw)

WOR ] Watercut Diagnostics ] [ Watercut Correlation @model ]