Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs


LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs


LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)


LaTeX Math Inline
bodyq_0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)


LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions



Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole


Equations


Pressure profilePressure gradient profile



LaTeX Math Block
anchorPressureProfile
alignmentleft
F(p, l)=\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
+ \left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d}  - (2/j_m^2) \,  \int_p^{p_0} \frac{dp}{\rho} - (2/j_m^2) \, g \, \Delta z(l) = 0



LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = {\rm Numerical} \ {\rm Derivative}


Mass FluxMass Flowrate


LaTeX Math Block
anchorMassFlux
alignmentleft
j_m =  \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
+ \left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d}
}
}



LaTeX Math Block
anchorMassFlowrate
alignmentleft
\dot m =  
A \cdot \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) 
+ \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) 
\cdot \frac{l}{ 2 \, d}
}
}


 Volumetric Flowrate

Intake Fluid velocity


LaTeX Math Block
anchorVolumtericFlowrate
alignmentleft
q_0 =  
\frac{A}{\rho_s} \cdot \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) 
+ \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) 
\cdot \frac{l}{ 2 \, d}
}
}



LaTeX Math Block
anchorIntakeFluidVelocity
alignmentleft
u_0 = 
\frac{1}{\rho_s} \cdot \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) 
+ \left( \frac{ff}{\rho^2} + \frac{ff_0}{\rho_0^2} \right) 
\cdot \frac{l}{ 2 \, d}
}
}


where

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Intake fluid density 

LaTeX Math Inline
bodyj_m = \dot m / A

Intake mass flux

LaTeX Math Inline
body--uriencoded--\displaystyle \dot m = \frac%7Bdm %7D%7B dt%7D

mass flowrate

LaTeX Math Inline
body--uriencoded--\displaystyle q_0 = \frac%7BdV_0%7D%7Bdt%7D = \dot m / \rho_0

Intake flowrate 

LaTeX Math Inline
bodyu_0 = u(l=0) = q_0 / A = j_m / \rho_0

Intake Fluid velocity

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f_s = f(%7B\rm Re%7D_s, \, \epsilon)

Darcy friction factor at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_0 q_0%7D%7B\pi d%7D \frac%7B1%7D%7B\mu%7D

Reynolds number at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)



Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

See Pressure Profile in Stationary Quasi-Isothermal Homogenous Pipe Flow @model



The first term in the right side of 

LaTeX Math Block Reference
anchorgradP
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant

LaTeX Math Inline
body f(l) = f_s = \rm const
 along-hole ( see  Darcy friction factor in water producing/injecting wells ).



References


Show If
grouparax


Panel
bgColorpapayawhip
titleARAX