Motivation
Numerical quadrature solution of Pressure Profile in Homogeneous Steady-State Pipe Flow @model
Outputs
Inputs
T_0 | Intake temperature | T(l) | Along-pipe temperature profile |
p_0 | Intake pressure | \rho(T, p) | |
q_0 | Intake flowrate | \mu(T, p) | |
z(l) | Pipeline trajectory TVDss | A | Pipe cross-section area |
\theta(l) | Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl} | \epsilon | Inner pipe wall roughness |
Assumptions
Steady-State flow | Quasi-isothermal flow |
\displaystyle \frac{\partial p}{\partial t} = 0 | \displaystyle \frac{\partial T}{\partial t} =0 \rightarrow T(t,l) = T(l) |
Homogenous flow | Constant cross-section pipe area A along hole |
\displaystyle \frac{\partial p}{\partial \tau_x} =\frac{\partial p}{\partial \tau_y} =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l) | A(l) = A = \rm const |
Constant inclination | Constant friction along hole |
\displaystyle \theta(l) = \theta = {\rm const} \rightarrow \cos \theta = \frac{dz}{dl} = {\rm const} | f(l) = f = \rm const |
Equations
Pressure profile along the pipe | ||
---|---|---|
|
where
\displaystyle j_m = \frac{ \dot m }{ A} = \rm const | mass flux |
\displaystyle \dot m = \frac{dm }{ dt} = \rm const | mass flowrate |
\displaystyle q_0 = \frac{dV_0}{dt} = \frac{ \dot m }{ \rho_0} | Intake volumetric flowrate |
\rho_0 = \rho(T_0, p_0) | Intake fluid density |
\Delta z(l) = z(l)-z(0) | elevation drop along pipe trajectory |
f= f({\rm Re}(T,\rho), \, \epsilon) = \rm const | Darcy friction factor |
\displaystyle {\rm Re}(T,\rho) = \frac{j_m \cdot d}{\mu(T,\rho)} | Reynolds number in Pipe Flow |
\mu(T,\rho) | dynamic viscosity as function of fluid temperature T and density \rho |
\displaystyle d = \sqrt{ \frac{4 A}{\pi}} = \rm const | characteristic linear dimension of the pipe |
G = g \, \cos \theta = \rm const | gravity acceleration along pipe |
F = j_m^2 \cdot f/(2d) = \rm const |
Alternative forms
Density form | ||
---|---|---|
|
Approximations
|
|
where
\tilde \rho | no-flow pressure at the pipe end ( {\tilde j}_m = 0) |
See also