Page tree


Motivation


Numerical quadrature solution of  Pressure Profile in Homogeneous Steady-State Pipe Flow @model


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)

q_0

Intake flowrate 

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  

\theta(l)

Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Steady-State flowQuasi-isothermal flow

\displaystyle \frac{\partial p}{\partial t} = 0

\displaystyle \frac{\partial T}{\partial t} =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area A along hole

\displaystyle \frac{\partial p}{\partial \tau_x} =\frac{\partial p}{\partial \tau_y} =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

A(l) = A = \rm const

Constant inclinationConstant friction along hole

\displaystyle \theta(l) = \theta = {\rm const} \rightarrow \cos \theta = \frac{dz}{dl} = {\rm const}

f(l) = f = \rm const


Equations


Pressure profile along the pipe
(1) L =\int_{p_0}^{p} \frac{\rho \, dp}{G \, \rho^2 - F} -\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}

where

\displaystyle j_m = \frac{ \dot m }{ A} = \rm const

mass flux

\displaystyle \dot m = \frac{dm }{ dt} = \rm const

mass flowrate

\displaystyle q_0 = \frac{dV_0}{dt} = \frac{ \dot m }{ \rho_0}

Intake volumetric flowrate

\rho_0 = \rho(T_0, p_0)

Intake fluid density 

\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

f= f({\rm Re}(T,\rho), \, \epsilon) = \rm const

Darcy friction factor 

\displaystyle {\rm Re}(T,\rho) = \frac{j_m \cdot d}{\mu(T,\rho)}

Reynolds number in Pipe Flow

\mu(T,\rho)

dynamic viscosity as function of fluid temperature  T and density  \rho

\displaystyle d = \sqrt{ \frac{4 A}{\pi}} = \rm const

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

G = g \, \cos \theta = \rm const

gravity acceleration along pipe 

F = j_m^2 \cdot f/(2d) = \rm const




Alternative forms


Density form
(2) L = L(\rho) =\int_{\rho_0}^{\rho} \frac{ 1}{G \, \rho^2 - F} \, \frac{ d\rho}{c(\rho)} -\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}

Approximations


(3) \rho(p) = \tilde \rho \cdot \sqrt{ 1- \frac{f}{2d} \frac{j_m^2}{G} ( \rho_0^2 - {\tilde \rho}^2) }
(4) \int_{\rho_0}^{\tilde \rho} \frac{d \rho}{ \rho^2 \, c(\rho)} = G \cdot L

where

\tilde \rho

no-flow pressure at the pipe end ( {\tilde j}_m = 0)



See also

  • No labels