Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


We start with reservoir pressure diffusion outside wellbore:

LaTeX Math Block
anchorrho_dif
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \sum_k m_k(t) \cdot \delta({\bf r}-{\bf r}_k)
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where

LaTeX Math Inline
body\Sigma_k

well-reservoir contact of the 

LaTeX Math Inline
bodyk
-th well

LaTeX Math Inline
body--uriencoded--d %7B\bf \Sigma%7D

normal vector of differential area on the well-reservoir contact, pointing inside wellbore

LaTeX Math Inline
bodym_k(t)

mass rate at 

LaTeX Math Inline
bodyk
-th well 
LaTeX Math Inline
bodym_k(t) = \rho(p) \cdot q_k(t)


Then use the following equality:

LaTeX Math Block
anchorrhophi
alignmentleft
d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} +  \frac{d \rho }{\rho}  \right) 
= \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) 
= \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

to arrive at:

LaTeX Math Block
anchorS8TNB
alignmentleft
\rho \, \phi \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where

LaTeX Math Inline
bodyc_t = с_\phi+ c


We start with 

LaTeX Math Block Reference
anchorPZ
pageSingle-phase pressure diffusion @model
:

LaTeX Math Block
anchorPZ
alignmentleft
\phi \cdot c_t \cdot \partial_t p + \nabla  {\bf u}  
+ c \cdot ( {\bf u} \, \nabla p)
= \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
LaTeX Math Block
anchoruu
alignmentleft
{\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})

and neglect the non-linear term 

LaTeX Math Inline
body--uriencoded--c \cdot ( %7B\bf u%7D \, \nabla p)
 for low compressibility fluid
LaTeX Math Inline
bodyc \sim 0
 or equivalently to a constant fluid density:
LaTeX Math Inline
body\rho(p) = \rho = \rm const
.

Together with constant pore compressibility 

LaTeX Math Inline
bodyc_r = \rm const
this will lead to constant total compressibility 
LaTeX Math Inline
bodyc_t = c_r + c \approx \rm const
.

Assuming that permeability and fluid viscosity do not depend on pressure

LaTeX Math Inline
bodyk(p) = k = \rm const
 and
LaTeX Math Inline
body\mu(p) = \mu = \rm const
 one arrives to the differential equation with constant coefficients

LaTeX Math Block
anchorPZ
alignmentleft
\phi \, c_t \cdot \partial_t p + \nabla  {\bf u}  
= \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
LaTeX Math Block
anchoruu
alignmentleft
{\bf u} = - \frac{k}{\mu} \cdot ( \nabla p - \rho \, {\bf g})


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model