Page tree


Motivation



For the stabilized flow the wellbore pressure profile is constant and wellbore temperature profile is changing very slowly.


This allows solving the pressure-temperature problem iteratively:

  1. Iterations
  2. Iteration
  3. Iteration ...


Outputs


T(l)

Temperature distribution along the wellbore trajectory


Inputs


T_s

Intake temperature 

z(l)

Pipeline trajectory TVDss

p_s

Intake pressure 

\theta (l)

Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

q_s

Intake flowrate 

d

Flow pipe diameter

(tubing or casing depending on where flow occurs)

\rho(T, p)

Fluid density 

\epsilon

Inner pipe wall roughness

\mu(T, p)




Assumptions


Stationary fluid flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole

Incompressible fluid   \rho(T, p)=\rho_s = \rm const

Isoviscous   \mu(T, p) = \mu_s = \rm const



The stabilized water injection profile satisfies the assumptions of the Stationary Quasi-Isothermal Incompressible Isoviscous Pipe Flow Pressure Profile @model.


The water injection wellbore temperature profile can be split into the following components:

  • Upward vertical heat conduction from Earth's Centre towards Earth's surface leading to a static geothermal profile

  • Upward & Downward vertical heat conduction from reservoir with non-geothermal temperature (invaded by injection water)

  • Heat exchange between wellbore fluid and surrounding rocks above and below the invaded reservoir

  • The temperature in water invaded reservoir stays constant from top to bottom



Equations




(1) T(l) = Ts + ...

where








See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Production Technology  / Well Flow Performance / Lift Curves (LC) / Water Injection Wellbore Profile @model

 [ Water Injection Wellbore Pressure Profile @model ] [ Homogenous Pipe Flow Temperature Profile @model ]






  • No labels