Page tree


Motivation


Subsurface Temperature Profile around Lateral Flow makes adjustments to Geothermal Temperature Profile  T_G(z) to account for the lateral reservoir flow with a constant temperature (see Fig. 1 and Fig. 2).


Fig. 1. Sample Subsurface Temperature Profile around a  h_f height lateral flow at depth  z_f with temperature  T_f

Fig. 2. Sample Subsurface Temperature Profile around two lateral flows with temperature  T_{f1} and  T_{f2}


Outputs


T_e(t, z)

Subsurface temperature distribution


Inputs


t

Time lapse after the temperature step from  T_e(z=0) =0  up to  T_e(z=0) =T_f

z

Spatial coordinate along the transversal direction to constant temperature  T_e(z)= T_f plane  z=0

z_f

TVDss of the top of the lateral flow unit

h_f

True vertical thickness of the the lateral flow unit

T_f

Boundary temperature at  z=0

a_e

Thermal diffusivity of the surroundings

T_G(z)

Geothermal Temperature Profile


Equations


Driving equationInitial conditions Boundary conditions
(1) \frac{\partial T_e}{\partial t} = a_e^2 \, \Delta T_e = a_e^2 \, \frac{\partial^2 T_e}{\partial z^2}
(2) T_e(t=0, z) = T_G(z)
(3) T_e(t, z_f \leq z \leq z_f + h_f) = T_f = {\rm const}
(4) T_e(t, z \rightarrow \infty) = T_G(z)


Solution


(5) \mbox{if} \, z < z_f \; \Longrightarrow \;T_e(t,z) = T_f + (T_G(z) - T_f) \cdot \mbox{erf} \left( \frac{z_f-z}{\sqrt{4 a_e t}} \right)
(6) \mbox{if} \, z_f \leq z \leq z_f + h_f \; \Longrightarrow \; T_e(t,z) = T_f
(7) \mbox{if} \, z > z_f + h_f \; \Longrightarrow \; T_e(t,z) = T_f + (T_G(z) - T_f) \cdot \mbox{erf} \left( \frac{z-z_f-h_f}{\sqrt{4 a_e t}} \right)

where

\mbox{erf}(x)

Error function


See Also


Geology / Geothermal Temperature Field / Geothermal Temperature Profile

Physics / Fluid Dynamics / Linear Fluid Flow 

Temperature Flat Source Solution @model ] [ Geothermal Temperature Profile @model ]

Reference





  • No labels