Page tree

(1) \rho c \cdot \frac{\partial T}{\partial t} +\sum_{\gamma=w,o,g}\rho_{\gamma}c_{p\gamma} \cdot \bar u_{\gamma}\cdot\nabla T -\phi\cdot T\cdot\sum_{\gamma=w,o,g}s_{\gamma} \alpha_{T\gamma}\frac{\partial p_\gamma}{\partial t} -\sum_{\gamma=w,o,g}\rho_{\gamma}c_{p\gamma} \mu_{JT\gamma} \cdot \bar u_{\gamma}\cdot\nabla p_\gamma - \nabla \cdot \left[ \lambda_t \cdot \nabla T \right]   = \dot P^{\uparrow} + \dot P^{\downarrow}
(2) \rho c = (1-\phi) \cdot \rho_r \cdot c_r +\phi\,\cdot\!\sum_{\gamma=w,o,g}\rho_{\gamma} \cdot c_{v\gamma} \cdot s_{\gamma}
(3) \lambda_t=(1-\phi) \cdot \lambda_r + \phi \cdot \left ( s_w \lambda_w + s_o \lambda_o + s_g \lambda_g \right)
(4) \mu_{JT} = \frac{1}{c_p} \cdot \left( \alpha_T \cdot T - \frac{1}{\rho} \right)
(5) \alpha_T = - \frac{1}{\rho} \cdot \left( \frac{\partial \rho}{\partial T} \right)_p
(6) \dot P^{\uparrow} = \sum_{\gamma = w,o,g} \, \left[ \rho_\gamma ({\bf r}) \cdot c_{p\gamma} ({\bf r}) \, T({\bf r}) +p_\gamma({\bf r}) \right] \, q^{\uparrow}_\gamma({\bf r})\, \delta({\bf r})
(7) \dot P^{\downarrow} = \sum_{\gamma = w,o,g} \, \left[ \rho^{\downarrow}_\gamma ({\bf r}) \cdot c^{\downarrow}_{p\gamma} ({\bf r}) \, T^{\downarrow} ({\bf r}) +p^{\downarrow}_\gamma({\bf r}) \right] \, q^{\downarrow}_\gamma({\bf r})\, \delta({\bf r})


(8) \rho c \cdot \frac{\partial T}{\partial t} +\sum_{\gamma=w,o,g}\rho_{\gamma}c_{p\gamma} \cdot \bar u_{\gamma}\cdot\nabla T -\phi\cdot T\cdot\sum_{\gamma=w,o,g}s_{\gamma} \alpha_{T\gamma}\frac{\partial p_\gamma}{\partial t} -\sum_{\gamma=w,o,g} \left( \rho_{\gamma} \cdot \alpha_{T\gamma} \cdot T - 1 \right) \, \cdot \, \bar u_{\gamma}\cdot\nabla p_\gamma - \nabla \cdot \left[ \lambda_t \cdot \nabla T \right]   = \dot P^{\uparrow} + \dot P^{\downarrow}


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Dynamic Flow Model Reservoir Flow Model (RFM) Modified Black Oil Reservoir Flow @model

Subsurface Temperature Dynamic Computation @model





  • No labels