Page tree

@wikipedia


Amount of heat required to change the temperature of one unit of mass by one unit of temperature:

c_m = \frac{\delta Q}{\delta m \cdot \delta T}
SymbolDimensionSI unitsOil metric unitsOil field units

c_m

L2 T−2 Θ−1J/(kgK)J/(kgK)

 BTU/(lbm°F)


Specific Heat Capacity depends on the way the heat is transferred and as such is not a material property.


The two major heat transfer processes are isobaric and isohoric which define:

Isobaric specific heat capacityIsochoric specific heat capacity

c_{mp}

c_{mV}


Both c_{mp} and c_{mV} are material properties and properly tabulated for the vast majority of materials.


Specific Heat Capacity  c_m relates to Volumetric Heat Capacity  c_v and density of the matter  \rho as:

(1) c_m = \rho \cdot c_v


In many technical papers the "m" or "v" index is omitted which leads to confusion between  Specific Heat Capacity  c_m and Volumetric Heat Capacity  c_v.


For multiphase fluid in thermodynamic equilibrium the Specific Heat Capacity  c_m is:

(2) c_m = \frac{\sum_\alpha s_\alpha \rho_\alpha c_{m \alpha}}{\sum_\alpha s_\alpha \rho_\alpha }

where

s_\alpha

\alpha-phase volume share, subjected to \sum_{\alpha} s_\alpha = 1

\rho_\alpha

\alpha-phase Fluid Density

c_{v \alpha}

\alpha-phase Volumetric Heat Capacity


See also


Physics / Thermodynamics / Thermodynamic processHeat Transfer / Heat Capacity

[ Heat ] Volumetric Heat Capacity ]





  • No labels