Page tree

Mathematical model of rock shaliness.


The shales contain much higher concentration of radioactive minerals comparing to clean sands and carbonates (see Table 1 below).

This is why the most common way to quantify the shale content is the intensity of the natural gamma-ray (GR) emission.

The fist step is to normalize the actual GR-tool readings  GR_{log} to the reference values in clean rocks   GR_m and pure shales  GR_{sh} which is called Shale Index

(1) I_{GR}(l) = \frac{GR_{log}(l) - GR_m}{GR_{sh} - GR_m}

where  l – along-hole depth.

The model parameters  GR_{sh}  and   GR_m  are calibrated for each facies individually.

The shale Index  I_{GR} is varying between 0 (for non-shally rocks) and 1 (for pure shales) but the actual shaliness may behave non-linearly between these extremes (especially for shallow, young reservoirs). 

This can be calibrated based on the available core data.


The table below summairzes some popular shaliness models:

#EquationAuthorRock TypeCorrelation database
1

V_{sh} = I_{GR}




2

V_{sh} = 0.083 \cdot (2^{3.7 I_{GR}} - 1)

Larionov (1969)Tertiary Jurassic rocksWest Siberia
3

V_{sh} = 1.7 - \sqrt{(3.38 - (I_{GR}+0.7)^2)}

Clavier (1971)

4

V_{sh} = \frac{ I_{GR}}{3 - 2 I_{GR}}

Stieber (1970)



5

V_{sh} = 0.33 \cdot (2^{2 I_{GR}} - 1)

Larionov (1969)Older RocksWest Siberia


The graphic image of different shales volume models is brought on Fig. 1.




Table 1. GR values for popular minerals


Rock TypeGR, API
1Halite (NaCl)0
2Coal0
3Limestone5 – 10
4Sandstone10 – 20
5Dolomite10 – 20
6Shale80 – 140
7Mica100 – 170
8Silvite (KCl)500
Fig. 1. Shale Volume Models.


References


  • No labels