Motivation
Proxy model of Pressure Profile in Homogeneous Steady-State Pipe Flow @model in the form of algebraic equation for the fast computation.
Outputs
Inputs
T_0 | Intake temperature | T(l) | Along-pipe temperature profile |
p_0 | Intake pressure | \rho(T, p) | |
q_0 | Intake flowrate | \mu(T, p) | |
z(l) | Pipeline trajectory TVDss | A | Pipe cross-section area |
\theta(l) | Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl} | \epsilon | Inner pipe wall roughness |
Assumptions
Steady-State flow | Quasi-isothermal flow |
\displaystyle \frac{\partial p}{\partial t} = 0 | \displaystyle \frac{\partial T}{\partial t} =0 \rightarrow T(t,l) = T(l) |
Homogenous flow | Constant cross-section pipe area A along hole |
\displaystyle \frac{\partial p}{\partial \tau_x} =\frac{\partial p}{\partial \tau_y} =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l) | A(l) = A = \rm const |
Constant inclination | Constant friction along hole |
\displaystyle \theta(l) = \theta = {\rm const} \rightarrow \cos \theta = \frac{dz}{dl} = {\rm const} | f(l) = f = \rm const |
Linear density | |
\rho = \rho^* \cdot ( 1 + c^* \cdot p) which leads to \displaystyle c(p) = \frac{c^*}{1 + c^* \cdot p } and c^* \, \rho^* = c_0 \, \rho_0 |
Equations
Pressure profile along the pipe | |||||
---|---|---|---|---|---|
|
| ||||
|
|
where
\displaystyle j_m = \frac{ \dot m }{ A} | mass flux |
\displaystyle \dot m = \frac{dm }{ dt} | mass flowrate |
\displaystyle q_0 = \frac{dV_0}{dt} = \frac{ \dot m }{ \rho_0} | Intake volumetric flowrate |
\rho_0 = \rho(T_0, p_0) | Intake fluid density |
\Delta z(l) = z(l)-z(0) | elevation drop along pipe trajectory |
f = f({\rm Re}(T,\rho), \, \epsilon) = \rm const | Darcy friction factor |
\displaystyle {\rm Re}(T,\rho) =\frac{j_m \cdot d}{\mu(T,\rho)} | Reynolds number in Pipe Flow |
\mu(T,\rho) | dynamic viscosity as function of fluid temperature T and density \rho |
\displaystyle d = \sqrt{ \frac{4 A}{\pi}} = \rm const | characteristic linear dimension of the pipe |
G = g \, \cos \theta = \Delta Z/L = \rm const | gravity acceleration along pipe |
\Delta Z = Z_{out} - Z_{in} | altitude drop in downwards direction (positive if descending) |
F = j_m^2 \cdot f/(2d) = F(l) = \rm const |
Alternative forms
Volumetric Flowrate in inclined pipe: \cos \theta \neq 0 | ||
---|---|---|
| ||
Volumetric Flowrate in horizontal pipe: \cos \theta = 0 | ||
|
where
|
|
|
with the following asymptotes:
Low compressible fluids: c^* p \ll 1, \, \, c^* p_0 \ll 1 | High compressible fluids: c^* p \gg 1, \, \, c^* p_0 \gg 1 |
\displaystyle \rho_0/\rho = c^* \cdot (p_0-p) | \displaystyle \rho_0/\rho = p_0/p |
Approximations
n \geq 1 which is equivalent to L^* \geq d and holds true for the most of practical tube diameters, as the lowest practical values of L^* \geq d are L^* \geq 7,000 \, {\rm m} | ||
| ||
| ||
| ||
| ||
Pressure Profile in GC-proxy static fluid column @model | ||
| ||
|
See also
Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model
[ Pressure Profile in G-Proxy Pipe Flow @model / Pressure Profile in GF-Proxy Pipe Flow @model ]