Page tree


Motivation


Proxy model of Pressure Profile in Homogeneous Steady-State Pipe Flow @model in the form of algebraic equation for the fast computation.


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)

q_0

Intake flowrate 

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  

\theta(l)

Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Steady-State flowQuasi-isothermal flow

\displaystyle \frac{\partial p}{\partial t} = 0

\displaystyle \frac{\partial T}{\partial t} =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area A along hole

\displaystyle \frac{\partial p}{\partial \tau_x} =\frac{\partial p}{\partial \tau_y} =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

A(l) = A = \rm const

Constant inclinationConstant friction along hole

\displaystyle \theta(l) = \theta = {\rm const} \rightarrow \cos \theta = \frac{dz}{dl} = {\rm const}

f(l) = f = \rm const

Linear density

\rho = \rho^* \cdot ( 1 + c^* \cdot p)  which leads to   \displaystyle c(p) = \frac{c^*}{1 + c^* \cdot p }   and   c^* \, \rho^* = c_0 \, \rho_0


Equations


Pressure profile along the pipe
(1) L = \frac{1}{2 \, G \, c^* \rho^*} \cdot \ln \frac{G \, \rho^2-F}{G \, \rho_0^2-F} -\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}
(2) \cos \theta \neq 0
(3) L = \frac{1}{2F\, c^* \rho^*} \cdot (\rho_0^2 - \rho^2) + \frac{2d}{f} \cdot \ln \frac{\rho_0}{\rho}
(4) \cos \theta = 0

where

\displaystyle j_m = \frac{ \dot m }{ A}

mass flux

\displaystyle \dot m = \frac{dm }{ dt}

mass flowrate

\displaystyle q_0 = \frac{dV_0}{dt} = \frac{ \dot m }{ \rho_0}

Intake volumetric flowrate

\rho_0 = \rho(T_0, p_0)

Intake fluid density 

\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

f = f({\rm Re}(T,\rho), \, \epsilon) = \rm const

Darcy friction factor 

\displaystyle {\rm Re}(T,\rho) =\frac{j_m \cdot d}{\mu(T,\rho)}

Reynolds number in Pipe Flow

\mu(T,\rho)

dynamic viscosity as function of fluid temperature  T and density  \rho

\displaystyle d = \sqrt{ \frac{4 A}{\pi}} = \rm const

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

G = g \, \cos \theta = \Delta Z/L = \rm const

gravity acceleration along pipe 

\Delta Z = Z_{out} - Z_{in}

altitude drop in downwards direction (positive if descending)

F = j_m^2 \cdot f/(2d) = F(l) = \rm const



Alternative forms


 Volumetric Flowrate in inclined pipe\cos \theta \neq 0

(5) q_0^2 = \frac{2 d A^2 G}{f} \cdot \left[ 1 + \frac{ (\rho/\rho_0)^2 -1}{1- (\rho_0/\rho)^{\frac{2}{n-1}} \cdot \exp \left( \frac{fL/d}{ n-1} \right)} \right]

Volumetric Flowrate in horizontal pipe\cos \theta = 0

(6) q_0^2 = \frac{A^2}{c^* \rho^*} \cdot \frac{1 - (\rho/\rho_0)^2}{2 \ln (\rho_0/\rho) + fL/d}

where

(7) n = \frac{f \, L^*}{d}
(8) L^* = \frac{1}{2 \, G \, c^* \, \rho^*} = \frac{1}{2 \, G \, c_0 \, \rho_0}
(9) \rho_0/\rho = \frac{1+c^* p_0}{1+c^* p}

with the following asymptotes:

Low compressible fluids: c^* p \ll 1, \, \, c^* p_0 \ll 1

High compressible fluids: c^* p \gg 1, \, \, c^* p_0 \gg 1

\displaystyle \rho_0/\rho = c^* \cdot (p_0-p)

  \displaystyle \rho_0/\rho = p_0/p


Approximations



n \geq 1 which is equivalent to L^* \geq d and holds true for the most of practical tube diameters, as the lowest practical values of  L^* \geq d are  L^* \geq 7,000 \, {\rm m} 

(10) q_0^2 = \frac{2 \, d \, A^2 \, G}{f} \cdot \left [ 1 + \frac{(\rho/\rho_0)^2-1}{1- \exp (2 \, c_0 \, \rho_0 \, G \, L)} \right] = \frac{2 \, d \, A^2 \, g}{f \, L} \cdot \left [ \Delta Z + ((\rho/\rho_0)^2 -1) \cdot \frac{ \Delta Z}{1 - \exp(2 \, c_0 \, \rho_0 \, g \, \Delta Z)} \right]
(11) \dot m = \rho_0 \, q_0
(12) \rho = \rho_0 \, \exp(c_0 \, \rho_0 \, G \, L) \, \sqrt{1 - \frac{f \, q_0^2}{2 \, d \, A^2} \cdot \frac{1- \exp(-2 \, c _0 \, \rho_0 \, G \, L)}{G}} =\rho_0 \, \exp (с_0 \, \rho_0 \, g \, \Delta Z) \cdot \sqrt{ 1 - \frac{8}{\pi^2} \cdot \frac{f \, L}{d^5} \cdot q_0^2 \cdot \frac{1 - \exp(- 2 \, c_0 \, \rho_0 \, g \, \Delta Z) } { g \, \Delta Z}}
(13) p(L) = p_0 + \frac{\rho/\rho_0 -1}{c_0}
Pressure Profile in GC-proxy static fluid column @model
(14) \rho = \rho_0 \, \exp (c_0 \, \rho_0 \, g \, \Delta Z)
(15) p(L) = p_0 + \frac{\exp (c_0 \, \rho_0 \, g \, \Delta Z) -1}{c_0}


See also


References



  • No labels