Motivation
Proxy model of Pressure Profile in Homogeneous Steady-State Pipe Flow @model in the form of algebraic equation for fast computation.
Outputs
Inputs
T_0 | Intake temperature | T(l) | Along-pipe temperature profile |
p_0 | Intake pressure | \rho(T, p) | |
z(l) | \mu(T, p) | ||
Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl} | A | Pipe cross-section area |
Assumptions
Steady-State flow | Quasi-isothermal flow |
\displaystyle \frac{\partial p}{\partial t} = 0 | \displaystyle \frac{\partial T}{\partial t} =0 \rightarrow T(t,l) = T(l) |
Homogenous flow | Constant cross-section pipe area A along hole |
\displaystyle \frac{\partial p}{\partial \tau_x} =\frac{\partial p}{\partial \tau_y} =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l) | A(l) = A = \rm const |
Constant inclination | Linear density |
\displaystyle \theta(l) = \theta = {\rm const} \rightarrow \cos \theta = \frac{dz}{dl} = {\rm const} | \rho = \rho^* \cdot ( 1 + c^* \cdot p) |
Equation
Pressure profile in static fluid column, no flow: \dot m = 0, \, q_0 = 0 |
|
|
where
G = g \cdot \cos \theta | gravity acceleration along pipe |
See also
Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model
[ Pressure Profile in G-Proxy Pipe Flow @model / Pressure Profile in GF-Proxy Pipe Flow @model ]