Page tree

@wikipedia


Dimensionless quantity characterising the ratio of thermal convection to thermal conduction in fluids across (normal to) the boundary with solids:

(1) {\rm Nu} = \frac{\rm Convective \ heat \ transfer}{\rm Conductive \ heat \ transfer} = \frac{U}{\lambda / L} =\frac{U \cdot L}{\lambda }

where  U is the convective heat transfer coefficient of the flow,  L is the characteristic length \lambda is the thermal conductivity of the fluid.


Stagnant Fluid



For 
 Stagnant Fluid the Nusselt number is a constant number (OEIS sequence A282581):

(2) {\rm Nu}=3.6568


Natural Convection


In Natural Fluid Convection becomes dependant on Rayleigh number  \rm Ra and Prandtl number  \rm Pr \mbox{Nu} = f (\mbox{Ra}, \mbox{Pr}):

(3) \mbox{Nu}_D= \left[ 0.825 + \frac{0.387 \, \mbox{Ra}_D^{1/6}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{8/27}} \right]^2


Churchill and Chu 


All convection regimes in pipelines

\mbox{Ra}_D \leq 10^{12}

(4) \mbox{Nu}_L= 0.68 + \frac{0.663 \, \mbox{Ra}^{1/4}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{4/9}}


Churchill and Chu


Laminar convection

\mbox{Ra} \leq 10^9


In case of natural convection in the annulus the Nusselt number becomes also dependant on the annulus geometry:

(5) {\rm Nu}_{ann} = \frac{2 \cdot \epsilon({\rm Ra})}{\ln (r_{out}/r_{in})}

where

\epsilon({\rm Ra})

Natural Convection Heat Transfer Multiplier

\rm Ra

Rayleigh number 

r_{out}

inner radius of outer pipe

r_{in}

outer radius of inner pipe


Forced Convection



In Forced Fluid Convection the 
Nusselt number becomes dependant on Reynolds number  \rm Re and Prandtl number  \rm Pr\mbox{Nu} = f (\mbox{Re}, \mbox{Pr}).


(6) {\rm Nu}=3.66 + \frac{ 0.065 \cdot {\rm Re} \cdot {\rm Pr} \cdot {D/L} }{ 1 + 0.04 \cdot ({\rm Re} \cdot {\rm Pr} \cdot {D/L})^{2/3} }


Mills


Laminar flow in pipeline with diameter  D and length  L.

(7) {\rm Nu}=0.023 \cdot \mbox{Re}_D^{3/4} \cdot \mbox{Pr}^{0.4}


Dittus-Boelter


Turbulent flow  in pipeline 

\mbox{Re} \geq 10,000

(8) {\rm Nu}=\frac{ (f/8) \, ({\rm Re} - 1000) {\rm Pr} }{ 1 + 12.7 \, (f/8)^{1/2} \, ({\rm Pr}^{2/3} -1) }


Gnielinski

{\displaystyle 3000\leq \mathrm {Re}\leq 5\cdot 10^{6}}

0.5\leq \mathrm {Pr} \leq 2000 

f is Darcy friction factor

(9) {\rm Nu}=0.3 + \frac{0.62 \, \mbox{Re}^{1/2} \, \mbox{Pr}^{1/3} } {\left[ 1+ (0.4/\mbox{Pr})^{2/3} \right]^{1/4}} \left[ 1 + \left( \frac{\mbox{Re}}{282000} \right)^{5/8}\right]^{4/5}

All flow regimes in pipelines

\mbox {Re} \cdot \mbox {Pr} \geq 0.2

Accuracy  \sim 20 \%


Relation to Biot Number  


Both numbers naturally arise in modelling the heat exchange between solid body and fluid.

Both numbers have similar definition except that Nusselt number is based on  thermal conductivity of the fluid while Biot Number is based on  thermal conductivity of the solid body.

Normally Nusselt number indicates whether conductive or convective heat transfer dominates across the interface between solid body and fluid.

While Biot Number indicates whether significant thermal gradient will develop inside a solid body based on the ratio of heat transfer away from the surface of a solid body to heat transfer within the solid body.


See also


Physics / Thermodynamics / Heat Transfer

Heat Transfer Coefficient (HTC) ] Heat Transfer Coefficient @model ]

Dimensionless Heat Transfer Numbers ]

[ Prandtl number ] [ Rayleigh number ] Reynolds number ] [ Biot Number ]

References










  • No labels