Page tree

@wikipedia


Volume occupied by one mole of a substance (chemical element or chemical compound) at a given pressure  p and temperature  T:

(1) V_m(p, T) = \frac{V}{\nu} =\frac{M}{\rho}= \frac{1}{\rho_m} = \frac{N_A}{n}

where

V

volume

M

molar mass of a substance

n

Molecular Concentration

\nu

amount of substance

\rho

density of a substance

N_A

Avogadro constant (6.022140758(62) · 1023  mol−1 )


Molar volume
  V_m is directly related to the average intermolecular distance  V_m and in case of isotropic substanceV_m = N_A \cdot d^3.


Molar volume  V_m is inverse to Molar Density  \rho_m

(2) V_m = \frac{1}{\rho_m}


In case of 
fluid which satisfies Real Gas EOS @model the Molar volume  V_m can be expressed in terms of Z-factor  Z(p, T):

(3) V_m = \frac{ZRT}{p}

where

T

temperature

p

pressure

R

gas constant


Molar volume
of the mixture is:

(4) V_m(p, T) =\frac{M}{\rho_f} = \frac{\sum_k M_k \cdot x_k}{\rho_f}
where

M_k

molar mass of the k-th mixture component

x_k

mole fraction of the k-th mixture component

\rho_f

mixture density




  • No labels