Page tree




Spatial discretization

(1) \frac{dV_{W \alpha}}{dt} = - \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta} \cdot \frac{1}{B_w} \cdot \bar u_w \, \bar n_{\alpha\beta} + q_{W\alpha}
(2) \frac{dV_{O\alpha}}{dt} = - \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta}  \cdot \left( \frac{1}{B_o} \cdot \, \bar u_o + \frac{R_v}{B_g} \cdot \, \bar u_g \right)  \bar n_{\alpha\beta} + q_{O\alpha}
(3) \frac{dV_{G\alpha}}{dt} = - \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot \left( \frac{R_s}{B_o} \cdot \, \bar u_o + \frac{1}{B_g} \cdot \, \bar u_g \right) \bar n_{\alpha\beta} + q_{G\alpha}
(4) V = \cup_\alpha \, V_\alpha
(5) \frac{dV_{W \alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta} \cdot U_{W\alpha\beta}} + q_{W\alpha}
(6) \frac{dV_{O\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{O\alpha\beta}   + q_{O\alpha}
(7) \frac{dV_{G\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{G\alpha\beta} + q_{G\alpha}



(8) U_{W\alpha\beta} = -  \frac{1}{B_w} \cdot \bar u_w \, \bar n_{\alpha\beta}



(9) U_{O\alpha\beta} = - \frac{1}{B_o} \cdot \, \bar u_o \cdot \bar n_{\alpha\beta}  - \frac{R_v}{B_g} \cdot \, \bar u_g \cdot \bar n_{\alpha\beta}
(10) U_{G\alpha\beta} = - \frac{R_s}{B_o} \cdot \, \bar u_o \cdot \bar n_{\alpha\beta} - \frac{1}{B_g} \cdot \, \bar u_g \cdot \bar n_{\alpha\beta}

Time Discretization


Initialization: t = 0
(11) s^0_{w\alpha} = s_{wi\alpha}
(12) s^0_{o\alpha} = s_{oi\alpha}
(13) s^0_{g\alpha} = s_{gi\alpha}
(14) s^0_{w\alpha} + s^0_{o\alpha} + s^0}_{g\alpha} = 1
(15) V^0_{\phi\alpha} = V_\alpha \cdot \phi^0_\alpha, \quad \phi^0_\alpha = \phi^0_{i\alpha}
(16) V^0_{w\alpha} = s^0_{w\alpha} \cdot V^0_{\phi\alpha}


(17) V^0_{o\alpha} = s^0_{o\alpha} \cdot V^0_{\phi\alpha}


(18) V^0_{g\alpha} = s^0_{g\alpha} \cdot V^0_{\phi\alpha}



(19) V^0_{\phi\alpha} = V^0_{w\alpha} + V^0_{o\alpha} + V^0_{g\alpha}

(20) V^0_{W\alpha} = \frac{V^0_{w\alpha}}{B_{wi}}

(21) V^0_{O\alpha} =\frac{V^0_o}{B_{oi}} + R_{vi} \cdot \frac{V^0_g}{B_{gi}}


(22) V^0_{G\alpha} =\frac{V^0_G}{B_{gi}} + R_{si} \cdot \frac{V^0_o}{B_{oi}}







Semi-Implicit Progression: t → t + 1

(23) V^{t+1}_{W \alpha} = V^t_{W \alpha} \cdot \exp\left[\frac{\delta t}{V^t_{W \alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{W\alpha\beta} \; + \, q^{t+1}_{W\alpha} \right)\right]
(24) V^{t+1}_{O \alpha} = V^t_{O \alpha} \cdot \exp\left[\frac{\delta t}{V^t_{O \alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{O\alpha\beta} \; + \, q^{t+1}_{O\alpha} \right)\right]
(25) V^{t+1}_{G \alpha} = V^t_{G \alpha} \cdot \exp\left[\frac{\delta t}{V^t_{G \alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{G\alpha\beta} \; + \, q^{t+1}_{G\alpha} \right)\right]

(26) I^{t+1}_{W\alpha} = \frac{V^{t+1}_{W\alpha}}{V^0_{\phi_\alpha}}

(27) I^{t+1}_{O\alpha} = \frac{V^{t+1}_{O\alpha}}{V^0_{\phi_\alpha}}

(28) I^{t+1}_{G\alpha} = \frac{V^{t+1}_{G\alpha}}{V^0_{\phi_\alpha}}

(29) pp = pp^0_{\alpha} + \ln \Big[ \, \tilde B_w(pp) \cdot I^{t+1}_{W\alpha} \, + \, \tilde B_o(pp) \cdot I^{t+1}_{O\alpha} \, + \, \tilde B_g(pp) \cdot I^{t+1}_{G\alpha} \; \Big]



(30) pp^0_{\alpha} = c_\phi \cdot p^0_\alpha \, , \quad pp = c_\phi \cdot p
(31) p^{t+1}_\alpha = c_\phi^{-1} \cdot pp
(32) B^{t+1}_{w\alpha} = B_w(p^{t+1}_\alpha)
(33) B^{t+1}_{o\alpha} = B_o(p^{t+1}_\alpha)
(34) B^{t+1}_{g\alpha} = B_g(p^{t+1}_\alpha)


(35) R^{t+1}_{v\alpha} = R_v(p^{t+1}_\alpha)
(36) R^{t+1}_{s\alpha} = R_s(p^{t+1}_\alpha)
(37) RR^{t+1}_{\alpha} =  1 - R^{t+1}_{v\alpha} \, R^{t+1}_{s\alpha}
(38) BB^{t+1}_{o\alpha} =  \frac{B^{t+1}_{o\alpha}}{RR^{t+1}_{\alpha}}
(39) BB^{t+1}_{g\alpha} =  \frac{B^{t+1}_{g\alpha}}{RR^{t+1}_{\alpha}}
(40) V^{t+1}_{w\alpha} = B_w(p^{t+1}_\alpha) \cdot V^{t+1}_{W\alpha}
(41) V^{t+1}_{o\alpha} = BB^{t+1}_{o\alpha} \cdot \left( \, V^{t+1}_{O\alpha} - R^{t+1}_{v\alpha} \cdot V^{t+1}_{G\alpha} \, \right)
(42) V^{t+1}_{g\alpha} = BB^{t+1}_{g\alpha} \cdot \left(\, V^{t+1}_{G\alpha} - R^{t+1}_{s\alpha} \cdot V^{t+1}_{O\alpha} \, \right)



(43) V^{t+1}_{\phi\alpha} = V^{t+1}_{w\alpha} + V^{t+1}_{o\alpha} + V^{t+1}_{g\alpha}

(44) s^{t+1}_{w\alpha} = \frac{V^{t+1}_{w\alpha}}{V^{t+1}_{\phi\alpha}}
(45) s^{t+1}_{o\alpha} = \frac{V^{t+1}_{o\alpha}}{V^{t+1}_{\phi\alpha}}
(46) s^{t+1}_{g\alpha} = \frac{V^{t+1}_{g\alpha}}{V^{t+1}_{\phi\alpha}}
(47) s^{t+1}_{w\alpha} + s^{t+1}_{o\alpha} + s^{t+1}_{g\alpha} = 1












Ansatz Flux 2D+






Specify local orthogonal coordinate system:

(48) \bold e_{\alpha\beta} = \{ \, \bar e_{1\alpha\beta}, \, \bar e_{2\alpha\beta}, \, \bar e_{3\alpha\beta} \, \}
(49) \bar e_{1\alpha\beta} = \cos \theta_{z\alpha\beta} \cdot \cos \zeta_{x\alpha\beta} \cdot \bar e_x + \cos \theta_{z\alpha\beta} \cdot \sin \zeta_{x\alpha\beta} \cdot  \bar e_y + \sin \theta_{z\alpha\beta} \cdot \bar e_z
(50) \bar e_{2\alpha\beta} = \cos \theta_{z\alpha\beta} \cdot \sin \zeta_{x\alpha\beta} \cdot \bar e_x + \cos \theta_{z\alpha\beta} \cdot \cos \zeta_{x\alpha\beta} \cdot  \bar e_y + \sin \theta_{z\alpha\beta} \cdot \bar e_z
(51) \bar e_{3\alpha\beta} = \sin \theta_{z\alpha\beta} \cdot \sin \zeta_{x\alpha\beta} \cdot \bar e_x + \sin \theta_{z\alpha\beta} \cdot \cos \zeta_{x\alpha\beta} \cdot  \bar e_y + \cos \theta_{z\alpha\beta} \cdot \bar e_z
(52) \bar e_{1\alpha\beta} \cdot \bar e_{2\alpha\beta} = 0, \quad \bar e_e_{3\alpha\beta} \cdot \bar e_e_{3\alpha\beta} = 0, \quad \bar e_{2\alpha\beta} \cdot \bar e_{3\alpha\beta} = 0, \quad \bar e_{3\alpha\beta} = \bar e_{1\alpha\beta} \times \bar e_{2\alpha\beta}
(53) \bar n_{\alpha \beta} = \bar e_1
(54) \cos \theta_{z\alpha\beta} = \bar e_1 \cdot \bar e_z
(55) \bar g = g \cdot \bar e_z = \sin \theta_z \, \bar e_1 + \cos \theta_z \, \bar e_3 = ( g_1 =  \sin \theta_z, \, g_2 = 0, \, g_3 = \cos \theta_z )
(56) A_{\alpha\beta} =  D_{\alpha\beta} \cdot h_{\alpha\beta}
(57) \hat k * \bar g =   \bar e_1 \, (k_{11} \, g_1 + k_{13} \, g_3)   + \bar e_2 \,(k_{21} \, g_1 + k_{23} \, g_3)  + \bar e_3 \, (k_{31} \, g_1 + k_{33} \, g_3)
(58) \hat k * \bar g \cdot \bar n_{\alpha \beta} =  k_{11} \, g_1 + k_{13} \, g_3 = g \cdot ( k_{11} \, \sin \theta_{z\alpha\beta} + k_{13} \, \cos \theta_{z\alpha\beta} )
(59) \hat k * \bar \nabla \cdot \bar n_{\alpha \beta} =  k_{11} \, \partial_1 + k_{12} \, \partial_2 + k_{13} \, \partial_3 = k_{11} \, \partial_1 \quad \Leftarrow \, \partial_2 \equiv 0, \, \partial_3 \equiv 0
(60) \big( \hat k * \bar \nabla} p - \rho \cdot \hat k * \bar g \big) \cdot \bar n_{\alpha \beta} = k_{11\alpha} \, ( \partial_1 p -   \rho \cdot g \cdot \sin \theta_{z\alpha\beta} )
(61) \big( \hat k * \bar \nabla} p - \rho \cdot \hat k * \bar g \big) = k_{11} \, \partial_1 p - \rho \cdot g \cdot ( k_{11} \, \sin \theta_{z\alpha\beta} + k_{13} \, \cos \theta_{z\alpha\beta} )
(62) \bar u_{\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{r}}{\mu} \cdot k_{11\alpha} \cdot \big( R^{-1}_{\alpha\beta} \cdot (p_{\alpha\beta} - p_\alpha - \dot p_c \cdot (s_{\alpha\beta} - s_{\alpha})) -   \rho_\alpha \cdot g \cdot \sin \theta_{z\alpha\beta} \big)
(63) \bar u_{\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{r}}{\mu} \cdot k_{11\alpha} \cdot \big( R^{-1}_{\alpha\beta} \cdot (p_{\alpha\beta} - p_\alpha - \dot p_c \cdot (s_{\alpha\beta} + \dot p_c \cdot s_{\alpha}) -   \rho_\alpha \cdot g \cdot \sin \theta_{z\alpha\beta} \big)
(64) \bar u_{\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{r}}{\mu} \cdot k_{11\alpha} \cdot \Big( R^{-1}_{\alpha\beta} \cdot \big( \tilde p_{\alpha\beta} - p_\alpha + \dot p_c \cdot s_{\alpha} \big) -   \rho_\alpha \cdot g \cdot \sin \theta_{z\alpha\beta} \Big) \, , \quad \tilde p_{\alpha\beta} = p_{\alpha\beta}  - \dot p_c \cdot s_{\alpha\beta}
(65) \bar u_{\alpha \beta} \cdot \bar n_{\alpha \beta} = -  k_p \cdot \frac{k_{r}}{\mu} \cdot k_{11\alpha} \, ( \partial_1 p -   \rho \cdot g \cdot \sin \theta_{z\alpha\beta} )
(66) \bar u_{w\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{rw}}{\mu_w} \cdot k_{11\alpha} \cdot \Big( R^{-1}_{\alpha\beta} \cdot \big( \tilde p_{w\alpha\beta} - p_\alpha + \dot p_{cw} \cdot s_{w\alpha} \big) -   \rho_{w\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} \Big)
(67) \bar u_{o\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{ro}}{\mu_o} \cdot k_{11\alpha} \cdot \Big( R^{-1}_{\alpha\beta} \cdot \big( \tilde p_{o\alpha\beta} - p_\alpha + \dot p_{co} \cdot s_{o\alpha} \big) -   \rho_{o\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} \Big)
(68) \bar u_{g\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{rg}}{\mu_g} \cdot k_{11\alpha} \cdot \Big( R^{-1}_{\alpha\beta} \cdot \big( \tilde p_{g\alpha\beta} - p_\alpha + \dot p_{cg} \cdot s_{g\alpha} \big) -   \rho_g\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} \Big)



(69) U_{W\alpha\beta} = \frac{k_{p\alpha}}{B_{w\alpha}} \cdot \frac{k_{rw\alpha}}{\mu_{w\alpha}} \cdot k_{11\alpha} \cdot \Big( R^{-1}_{\alpha\beta} \cdot \big( \tilde p_{\alpha\beta} - p_\alpha + \dot p_{cw} \cdot s_{w\alpha} \big)  -   \rho_{w\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} \Big)




(70) U_{W\beta\alpha} =   \frac{k_{p\beta}}{B_{w\beta}} \cdot \frac{k_{rw\beta}}{\mu_{w\beta}} \cdot k_{11\beta} \cdot \Big( R^{-1}_{\beta\alpha} \cdot \big( \tilde p_{\beta\alpha} - p_\beta + \dot p_{cw} \cdot s_{w\beta} \big)  -   \rho_{w\beta} \cdot g \cdot \sin \theta_{z\beta\alpha} \Big)




(71) U_{W\alpha\beta} = U_{W\beta\alpha}










See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Dynamic Flow Model Reservoir Flow Model (RFM) / Modified Black Oil Reservoir Flow @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model / Modified Black Oil fluid @model

Petroleum Industry / Upstream / Production / Subsurface Production / Well & Reservoir Management / Formation pressure / Multiphase formation pressure



  • No labels