Page tree




Spatial discretization

(1) \frac{dV_{W \alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta} \cdot U_{W\alpha\beta}} + q_{W\alpha}
(2) \frac{dV_{O\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{O\alpha\beta}   + q_{O\alpha}
(3) \frac{dV_{G\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{G\alpha\beta} + q_{G\alpha}

(4) U_{W\alpha\beta} = -  \frac{1}{B_w} \cdot \bar u_{w\alpha\beta} \, \bar n_{\alpha\beta}
(5) U_{O\alpha\beta} = - \frac{1}{B_o} \cdot \, \bar u_{o\alpha\beta} \cdot \bar n_{\alpha\beta}  - \frac{R_v}{B_g} \cdot \, \bar u_{g\alpha\beta} \cdot \bar n_{\alpha\beta}
(6) U_{G\alpha\beta} = - \frac{R_s}{B_o} \cdot \, \bar u_{o\alpha\beta} \cdot \bar n_{\alpha\beta} - \frac{1}{B_g} \cdot \, \bar u_{g\alpha\beta} \cdot \bar n_{\alpha\beta}

Time Discretization

Initialization: t = 0
(7) s^0_{w\alpha} = s_{wi\alpha}
(8) s^0_{o\alpha} = s_{oi\alpha}
(9) s^0_{g\alpha} = s_{gi\alpha}
(10) s^0_{w\alpha} + s^0_{o\alpha} + s^0}_{g\alpha} = 1
(11) V^0_{\phi\alpha} = V_\alpha \cdot \phi^0_\alpha, \quad \phi^0_\alpha = \phi^0_{i\alpha}
(12) V^0_{w\alpha} = s^0_{w\alpha} \cdot V^0_{\phi\alpha}


(13) V^0_{o\alpha} = s^0_{o\alpha} \cdot V^0_{\phi\alpha}


(14) V^0_{g\alpha} = s^0_{g\alpha} \cdot V^0_{\phi\alpha}



(15) V^0_{\phi\alpha} = V^0_{w\alpha} + V^0_{o\alpha} + V^0_{g\alpha}
(16) V^0_{W\alpha} = \frac{V^0_{w\alpha}}{B_{wi}}
(17) V^0_{O\alpha} =\frac{V^0_o}{B_{oi}} + R_{vi} \cdot \frac{V^0_g}{B_{gi}}


(18) V^0_{G\alpha} =\frac{V^0_G}{B_{gi}} + R_{si} \cdot \frac{V^0_o}{B_{oi}}



(19) U^0_{W\alpha\beta} = 0



(20) U^0_{O\alpha\beta} = 0



(21) U^0_{G\alpha\beta} = 0




Semi-Implicit Progression: t → t + 1

Loop Over Step #1 – Step #5
Step #1 – Velocity
(22) U^{t+1}_{W\alpha\beta} = -  \frac{1}{B^t_w} \cdot \; \bar u^t_{w\alpha\beta} \cdot \; \bar n_{\alpha\beta}
(23) U^{t+1}_{O\alpha\beta} = - \frac{1}{B^t_o} \cdot \; \bar u^t_{o\alpha\beta} \cdot \; \bar n_{\alpha\beta}  - \frac{R^t_v}{B^t_g} \cdot \, \bar u^t_{g\alpha\beta} \cdot \; \bar n_{\alpha\beta}
(24) U^{t+1}_{G\alpha\beta} = - \frac{R^t_s}{B^t_o} \cdot \; \bar u^t_{o\alpha\beta} \cdot \; \bar n_{\alpha\beta} - \frac{1}{B^t_g} \cdot \, \bar u^t_{g\alpha\beta} \cdot \; \bar n_{\alpha\beta}

Step #2 – Influx
(25) \delta I^{t+1}_{W \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{W\alpha\beta} \; + \, q^{t+1}_{W\alpha} \right)
(26) \delta I^{t+1}_{O \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{O\alpha\beta} \; + \, q^{t+1}_{O\alpha} \right)
(27) \delta I^{t+1}_{G \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{G\alpha\beta} \; + \, q^{t+1}_{G\alpha} \right)

Step #3 –  Balance


(28) I^{t+1}_{W \alpha} = I^t_{W \alpha} + \delta I^{t+1}_{W \alpha}
(29) I^{t+1}_{O \alpha} = I^t_{O \alpha} + \delta I^{t+1}_{O \alpha}\; , \; \;  \delta I^{t+1}_{O \alpha} >0
(30) I^{t+1}_{G \alpha} = I^t_{G \alpha} + \delta I^{t+1}_{G \alpha}\; , \; \;  \delta I^{t+1}_{G \alpha} >0

Step #4 – Handle depletion

(31) \text{if} \; I^{t+1}_{W \alpha} < 0 \; \Rightarrow \; I^{t+1}_{W \alpha} = 0 \; , \; \; \delta I^{t+1}_{W \alpha} = - I^t_{W \alpha}
(32) \text{if} \; I^{t+1}_{O \alpha} < 0 \; \Rightarrow \; I^{t+1}_{O \alpha} = 0 \; , \; \; \delta I^{t+1}_{O \alpha} = - I^t_{O \alpha}
(33) \text{if} \; I^{t+1}_{G \alpha} < 0 \; \Rightarrow \; I^{t+1}_{O \alpha} = 0 \; , \; \; \delta I^{t+1}_{G \alpha} = - I^t_{G \alpha}

(34) I^{t+1}_{W\alpha} = \frac{V^{t+1}_{W\alpha}}{V^0_{\phi_\alpha}} \; , \quad I^t_{W\alpha} = \frac{V^t_{W\alpha}}{V^0_{\phi_\alpha}}
(35) I^{t+1}_{O\alpha} = \frac{V^{t+1}_{O\alpha}}{V^0_{\phi_\alpha}}\; , \quad I^t_{O\alpha} = \frac{V^t_{O\alpha}}{V^0_{\phi_\alpha}}
(36) I^{t+1}_{G\alpha} = \frac{V^{t+1}_{G\alpha}}{V^0_{\phi_\alpha}}\; , \quad I^t_{G\alpha} = \frac{V^t_{G\alpha}}{V^0_{\phi_\alpha}}

(37) - I^t_{W \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot \; \tilde U^{t+1}_{W\alpha\beta} \; + \, \tilde q^{t+1}_{W\alpha} \right)
(38) - I^t_{O \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot   \; \tilde U^{t+1}_{O\alpha\beta} \; + \, q^{t+1}_{O\alpha} \right)
(39) - I^t_{G \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot   \; \tilde U^{t+1}_{G\alpha\beta} \; + \, q^{t+1}_{G\alpha} \right)

(40) -I_{W\alpha}^t\cdot V_{\phi_{\alpha}}^0= \delta t \cdot \sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+}\cdot U^{t+1}_{W\alpha\beta^+} + \delta t^*_{W\alpha\beta^-} \cdot\left(\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{W\alpha\beta^-} + q^{t+1}_{W\alpha} \right)
(41) -I_{O\alpha}^t\cdot V_{\phi_{\alpha}}^0= \delta t \cdot \sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+}\cdot U^{t+1}_{O\alpha\beta^+} + \delta t^*_{O\alpha\beta^-} \cdot\left(\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{O\alpha\beta^-} + q^{t+1}_{O\alpha} \right)
(42) -I_{G\alpha}^t\cdot V_{\phi_{\alpha}}^0= \delta t \cdot \sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+}\cdot U^{t+1}_{G\alpha\beta^+} + \delta t^*_{G\alpha\beta^-} \cdot\left(\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{G\alpha\beta^-} + q^{t+1}_{G\alpha} \right)

(43) \delta t^*_{W\alpha\beta^-} =\frac{-I_{W\alpha}^t\cdot V_{\phi_{\alpha}}^0-\delta t \cdot\sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+} \cdot U^{t+1}_{W\alpha\beta^+}}{\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{W\alpha\beta^-} + q^{t+1}_{W\alpha}} \; , \quad I^{t+1}_{W \alpha} < 0 \; \Rightarrow \; 0 < \delta t^*_{W\alpha\beta^-} / \delta t < 1
(44) \delta t^*_{O\alpha\beta^-} =\frac{-I_{O\alpha}^t\cdot V_{\phi_{\alpha}}^0-\delta t \cdot\sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+} \cdot U^{t+1}_{O\alpha\beta^+}}{\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{O\alpha\beta^-} + q^{t+1}_{O\alpha}} \; , \quad I^{t+1}_{O \alpha} < 0 \; \Rightarrow \; 0 < \delta t^*_{O\alpha\beta^-} / \delta t < 1
(45) \delta t^*_{G\alpha\beta^-} =\frac{-I_{G\alpha}^t\cdot V_{\phi_{\alpha}}^0-\delta t \cdot\sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+} \cdot U^{t+1}_{G\alpha\beta^+}}{\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{G\alpha\beta^-} + q^{t+1}_{G\alpha}} \; , \quad I^{t+1}_{G \alpha} < 0 \; \Rightarrow \; 0 < \delta t^*_G / \delta t < 1

(46) \tilde q^{t+1}_{W\alpha} = q^{t+1}_{W\alpha} \cdot \delta t^*_{W\alpha\beta^-}/\delta t
(47) \tilde U^{t+1}_{W\alpha\beta^-} = U^{t+1}_{W\alpha\beta^-} \cdot \delta t^*_{W\alpha\beta^-}/\delta t
(48) \tilde U^{t+1}_{W\beta^-\alpha} = \tilde U^{t+1}_{W\alpha\beta^-}
(49) \tilde q^{t+1}_{O\alpha} = q^{t+1}_{O\alpha} \cdot \delta t^*_{O\alpha\beta^-}/\delta t
(50) \tilde U^{t+1}_{O\alpha\beta^-} = U^{t+1}_{O\alpha\beta^-} \cdot \delta t^*_{O\alpha\beta^-}/\delta t
(51) \tilde U^{t+1}_{O\beta^-\alpha} = \tilde U^{t+1}_{O\alpha\beta^-}
(52) \tilde q^{t+1}_{G\alpha} = q^{t+1}_{G\alpha} \cdot \delta t^*_{G\alpha\beta^-}/\delta t
(53) \tilde U^{t+1}_{G\alpha\beta^-} = U^{t+1}_{G\alpha\beta^-} \cdot \delta t^*_{G\alpha\beta^-}/\delta t
(54) \tilde U^{t+1}_{G\beta^-\alpha} = \tilde U^{t+1}_{G\alpha\beta^-}

Step #5 – Reservoir Pressure

(55) pp^0_{\alpha} = c_{\phi_\alpha} \cdot p^0_\alpha
(56) \tilde B_w(pp) \cdot I^{t+1}_{W\alpha} \, + \, \tilde B_o(pp) \cdot I^{t+1}_{O\alpha} \, + \, \tilde B_g(pp) \cdot I^{t+1}_{G\alpha} - \exp \left( pp-pp^0_{\alpha} \right) = 0
(57) p^{t+1}_\alpha =  c_{\phi_\alpha}^{-1} \cdot pp

Back to Step #1

Step #6 – PVT properties
(58) B^{t+1}_{w\alpha} = B_w(p^{t+1}_\alpha)
(59) B^{t+1}_{o\alpha} = B_o(p^{t+1}_\alpha)
(60) B^{t+1}_{g\alpha} = B_g(p^{t+1}_\alpha)


(61) R^{t+1}_{v\alpha} = R_v(p^{t+1}_\alpha)
(62) R^{t+1}_{s\alpha} = R_s(p^{t+1}_\alpha)
(63) RR^{t+1}_{\alpha} =  1 - R^{t+1}_{v\alpha} \, R^{t+1}_{s\alpha}
(64) BB^{t+1}_{o\alpha} =  \frac{B^{t+1}_{o\alpha}}{RR^{t+1}_{\alpha}}
(65) BB^{t+1}_{g\alpha} =  \frac{B^{t+1}_{g\alpha}}{RR^{t+1}_{\alpha}}
(66) V^{t+1}_{w\alpha} = B_w(p^{t+1}_\alpha) \cdot V^{t+1}_{W\alpha}
(67) V^{t+1}_{o\alpha} = BB^{t+1}_{o\alpha} \cdot \left( \, V^{t+1}_{O\alpha} - R^{t+1}_{v\alpha} \cdot V^{t+1}_{G\alpha} \, \right)
(68) V^{t+1}_{g\alpha} = BB^{t+1}_{g\alpha} \cdot \left(\, V^{t+1}_{G\alpha} - R^{t+1}_{s\alpha} \cdot V^{t+1}_{O\alpha} \, \right)



Step #7 – Phase volumes

(69) V^{t+1}_{\phi\alpha} = V^{t+1}_{w\alpha} + V^{t+1}_{o\alpha} + V^{t+1}_{g\alpha}

Step #8 – Reservoir saturation

(70) s^{t+1}_{w\alpha} = \frac{V^{t+1}_{w\alpha}}{V^{t+1}_{\phi\alpha}}
(71) s^{t+1}_{o\alpha} = \frac{V^{t+1}_{o\alpha}}{V^{t+1}_{\phi\alpha}}
(72) s^{t+1}_{g\alpha} = \frac{V^{t+1}_{g\alpha}}{V^{t+1}_{\phi\alpha}}
(73) s^{t+1}_{w\alpha} + s^{t+1}_{o\alpha} + s^{t+1}_{g\alpha} = 1




Ansatz Flux 2D+

Specify local orthogonal coordinate system:

(74) \bold e_{\alpha\beta} = \{ \, \bar e_{1\alpha\beta}, \, \bar e_{2\alpha\beta}, \, \bar e_{3\alpha\beta} \, \}
(75) \bar e_{1\alpha\beta} \cdot \bar e_{2\alpha\beta} = 0, \quad \bar e_e_{1\alpha\beta} \cdot \bar e_e_{3\alpha\beta} = 0, \quad \bar e_{2\alpha\beta} \cdot \bar e_{3\alpha\beta} = 0, \quad \bar e_{1\alpha\beta} = \bar e_{3\alpha\beta} \times \bar e_{2\alpha\beta}
(76) \bar n_{\alpha \beta} = \bar e_{1\alpha\beta} = \cos \zeta_{\alpha \beta} \, \cdot \, \bar e_x + \sin \zeta_{\alpha \beta} \, \cdot \, \bar e_y
(77) \cos \theta_{z\alpha\beta} = \bar n_{\alpha\beta} \cdot \bar e_z = \bar e_{1\alpha\beta} \cdot \bar e_z
(78) \bar g = g \cdot \; \bar e_z =  g_1 \cdot \; \bar e_{1\alpha\beta} + g_2 \cdot \; \bar e_{2\alpha\beta} + g_3 \; \bar e_{3\alpha\beta} = g \cdot \cos \theta_{z\alpha\beta} \cdot \; \bar e_{1\alpha\beta} + g \cdot \sin \theta_{z\alpha\beta} \cdot \; \bar e_{3\alpha\beta}
(79) g_1 = g \cdot \cos \theta_{z\alpha\beta} \; , \; g_2 = 0 \; , \; g_3 = g \cdot \sin \theta_{z\alpha\beta}




(80) \begin{equation} \hat k = \begin{pmatrix} k_{11} & k_{12} & 0 \\ k_{12} & k_{22} & 0 \\ 0 & 0 & k_v \end{pmatrix}\end{equation}
(81) \begin{equation} \hat k = \left\{ \begin{split} k_{11} &= k_{\max} \cdot \cos^2 \phi + k_{\min} \cdot \sin^2 \phi \\ k_{12} &= (k_{\max}-k_{\min}) \cdot \sin \phi \cdot \cos \phi \\ k_{22} &= k_{\max} \cdot \sin^2 \phi + k_{\min} \cdot \cos^2 \phi \end{split} \end{equation}
(82) \cos \phi = \; \bar e_1 \cdot \; \bar e_{k\max}
(83) \bar v = v_1 \cdot \; \bar e_1 + v_2 \cdot \; \bar e_2 + v_3 \cdot \; \bar e_3 = \left( \begin{split} v_1 \\ v_2 \\ v_3\end{split} \right)
(84) \hat k * \bar v = (k_{11} \cdot v_1 + k_{12} \cdot v_2) \cdot \; \bar e_1 + (k_{12} \cdot v_1 + k_{22} \cdot v_2) \cdot \; \bar e_2 + k_v \cdot v_3 \cdot \; \bar e_3
(85) \hat k * \bar g = k_{11} \cdot g_1 \cdot \; \bar e_1 + k_{12} \cdot g_1 \cdot \; \bar e_2 + k_v \cdot g_3 \cdot \; \bar e_3
(86) \hat k * \bar g \cdot \bar e_1 = k_{11} \cdot g_1 = k_{11} \cdot g \cdot \cos \theta_z
(87) \hat k * \bar \nabla = k_{11} \cdot \partial_1() \cdot \; \bar e_1 + k_{12} \cdot \partial_1() \cdot \; \bar e_2 + k_v \cdot \partial_3() \cdot \; \bar e_3
(88) \hat k * \bar \nabla \cdot \bar e_1 = k_{11} \cdot \partial_1()
(89) \big( \hat k * \bar \nabla} p - \rho \cdot \hat k * \bar g \big) \cdot \bar e_1 = k_{11\alpha} \, ( \partial_1 p -   \rho \cdot g \cdot \cos \theta_z )




(90) \big( \hat k_\alpha * \bar \nabla} p_{f\alpha} - \rho_{f\alpha} \cdot \hat k_\alpha * \bar g \big) \cdot \bar n_{\alpha \beta} = k_{11\alpha\beta} \, ( \partial_1 p_{f\alpha} -   \rho_{f\alpha} \cdot g \cdot \cos \theta_{z\alpha_\beta} )
(91) \bar u_{f\alpha \beta} \cdot \bar n_{\alpha \beta} = -  k_{p\alpha\beta} \cdot \frac{k_{rf\alpha\beta}}{\mu_{f\alpha\beta}} \cdot k_{11\alpha\beta} \, ( \partial_1 p_{f\alpha} -   \rho_{f\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} )
(92) \bar u_{f\alpha \beta} \cdot \bar n_{\alpha \beta} = -  k_{p\alpha\beta}  \cdot \frac{k_{rf\alpha\beta}}{\mu_{f\alpha\beta}} \cdot k_{11\alpha\beta} \cdot \left( \partial_1 (p_\alpha + p_{cf\alpha}) -   \rho_{f\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} \right)
(93) \bar u_{f\alpha\beta} \cdot \; \bar n_{\alpha \beta}  = -  k_{p\alpha\beta}  \cdot \frac{k_{rf\alpha\beta}}{\mu_{f\alpha\beta}} \cdot k_{11\alpha\beta} \cdot \left( \frac{ p_{\alpha\beta} + p_{cf}(s_{\alpha\beta} ) - \left( p_\alpha + p_{cf}(s_{\alpha}) \right) }{R_{\alpha\beta}} -   \rho_{f\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} \right)
(94) \bar u_{f\alpha\beta} \cdot \; \bar n_{\alpha \beta}  = -  k_{p\alpha\beta}  \cdot \frac{k_{rf\alpha\beta}}{\mu_{f\alpha\beta}} \cdot k_{11\alpha\beta} \cdot R^{-1}_{\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + p_{cf}(s_{\alpha\beta}) - p_{cf}(s_{\alpha}) -   R_{\alpha\beta} \cdot \rho_{f\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta} \right)
(95) \bar u_{f\alpha\beta} \cdot \; \bar n_{\alpha \beta}  = -  G_{f\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{f\alpha\beta}  \right)
(96) G_{f\alpha\beta} = k_{p\alpha\beta}  \cdot \frac{k_{rf\alpha\beta}}{\mu_{f\alpha\beta}} \cdot k_{11\alpha\beta} \cdot R^{-1}_{\alpha\beta}
(97) \delta p_{f\alpha\beta} = p_{cf}(s_{\alpha\beta}) - p_{cf}(s_{\alpha}) -   R_{\alpha\beta} \cdot \rho_{f\alpha} \cdot g \cdot \sin \theta_{z\alpha\beta}
(98) k_{11\alpha\beta} = k_{\max\alpha\beta} \cdot \cos^2 \phi_{\alpha\beta} + k_{\min\alpha\beta} \cdot \sin^2 \phi_{\alpha\beta}
(99) \cos \phi_{\alpha\beta} = \; \bar n_{\alpha\beta} \cdot \; \bar e_{k\max}
(100) k_{p\alpha\beta} = \exp \left[ \; c_{k\alpha\beta} \cdot \left( p_{\alpha \beta} - p_{0\alpha \beta} \right) \; \right]
(101) k_{rf\alpha\beta} = k_{rf}(s_{\alpha\beta})
(102) \mu_{f\alpha\beta} = \mu_f(p_{\alpha\beta})
(103) s_{f\alpha\beta}=\frac{s_{f\alpha} \cdot V_{\alpha\beta} + s_{\beta}\cdot V_{\beta\alpha}}{V_{\alpha\beta} + V_{\beta\alpha}}
(104) s_{f\alpha\beta}=s_{f\alpha} \cdot v_{\alpha\beta} + s_{f\beta}\cdot v_{\beta\alpha} \; , \quad v_{\alpha\beta} = \frac{V_{\alpha\beta}}{V_{\alpha\beta} + V_{\beta\alpha}} \, , \; v_{\beta\alpha} = 1 - v_{\alpha\beta} = \frac{V_{\beta\alpha}}{V_{\alpha\beta} + V_{\beta\alpha}}
(105) \sum_{\beta \in \Gamma_\alpha} V_{\alpha\beta} = V_{\alpha} \; , \; \; \sum_{\alpha \in \Gamma_\beta} V_{\beta\alpha} = V_{\beta}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

(106) \bar u_{w\alpha\beta} \cdot \; \bar n_{\alpha \beta}  = -  G_{w\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{w\alpha\beta}  \right)
(107) \bar u_{o\alpha\beta} \cdot \; \bar n_{\alpha \beta}  = -  G_{o\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{o\alpha\beta}  \right)
(108) \bar u_{g\alpha\beta} \cdot \; \bar n_{\alpha \beta}  = -  G_{g\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{g\alpha\beta}  \right)

(109) U_{W\alpha\beta} =   B^{-1}_{w\alpha} \cdot G_{w\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{w\alpha\beta}  \right)
(110) U_{O\alpha\beta} =   B^{-1}_{o\alpha} \cdot   G_{o\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{o\alpha\beta}  \right) + R_{v\alpha} \cdot B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{g\alpha\beta}  \right)
(111) U_{G\alpha\beta}  =   R_{s\alpha} \cdot B^{-1}_{o\alpha} \cdot G_{o\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{o\alpha\beta}  \right) + B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha + \delta p_{g\alpha\beta}  \right)

(112) U_{W\alpha\beta} =   B^{-1}_{w\alpha} \cdot G_{w\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + B^{-1}_{w\alpha} \cdot G_{w\alpha\beta} \cdot \delta p_{w\alpha\beta}



(113) U_{O\alpha\beta} =   \begin{split} & B^{-1}_{o\alpha} \cdot   G_{o\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + B^{-1}_{o\alpha} \cdot   G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \; + \\ & + R_{v\alpha} \cdot B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + R_{v\alpha} \cdot B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta} \end{split}
(114) U_{G\alpha\beta}  =   \begin{split} & R_{s\alpha} \cdot B^{-1}_{o\alpha} \cdot G_{o\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha  \right) + R_{s\alpha} \cdot B^{-1}_{o\alpha} \cdot G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \; + \\ & + B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta} \end{split}

(115) U_{W\alpha\beta} =   B^{-1}_{w\alpha} \cdot G_{w\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + B^{-1}_{w\alpha} \cdot G_{w\alpha\beta} \cdot \delta p_{w\alpha\beta}
(116) U_{O\alpha\beta} =   \begin{split} & \left( B^{-1}_{o\alpha} \cdot   G_{o\alpha\beta} + R_{v\alpha} \cdot B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \right) \cdot \left( p_{\alpha\beta} - p_\alpha \right) \\ & + B^{-1}_{o\alpha} \cdot   G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \; + R_{v\alpha} \cdot B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta} \end{split}
(117) U_{G\alpha\beta}  =   \begin{split} & \left( R_{s\alpha} \cdot B^{-1}_{o\alpha} \cdot G_{o\alpha\beta} + B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \right) \cdot \left( p_{\alpha\beta} - p_\alpha  \right) \\ & + R_{s\alpha} \cdot B^{-1}_{o\alpha} \cdot G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \; + B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta} \end{split}


(118) U_{W\alpha\beta} = T_{W\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + L_{W\alpha\beta}
(119) U_{O\alpha\beta} =  T_{O\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + L_{O\alpha\beta}
(120) U_{G\alpha\beta} =  T_{G\alpha\beta} \cdot \left( p_{\alpha\beta} - p_\alpha \right) + L_{G\alpha\beta}

(121) T_{W\alpha\beta}  = B^{-1}_{w\alpha} \cdot G_{w\alpha\beta}
(122) L_{W\alpha\beta} = B^{-1}_{w\alpha} \cdot G_{w\alpha\beta} \cdot \delta p_{w\alpha\beta}
(123) T_{O\alpha\beta}  =  B^{-1}_{o\alpha} \cdot   G_{o\alpha\beta} + R_{v\alpha} \cdot B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta}
(124) L_{O\alpha\beta} = B^{-1}_{o\alpha} \cdot   G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \; + R_{v\alpha} \cdot B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta}
(125) T_{G\alpha\beta}  =   R_{s\alpha} \cdot B^{-1}_{o\alpha} \cdot G_{o\alpha\beta} + B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta}
(126) L_{G\alpha\beta} = R_{s\alpha} \cdot B^{-1}_{o\alpha} \cdot G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \; + B^{-1}_{g\alpha} \cdot   G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta}





(127) U_{W\beta\alpha} = T_{W\beta\alpha} \cdot \left( p_{\beta\alpha} - p_\beta \right) + L_{W\beta\alpha}
(128) U_{O\beta\alpha} =  T_{O\beta\alpha} \cdot \left( p_{\alpha\beta} - p_\beta \right) + L_{O\beta\alpha}
(129) U_{G\beta\alpha} =  T_{G\beta\alpha} \cdot \left( p_{\alpha\beta} - p_\beta \right) + L_{G\beta\alpha}

(130) T_{W\beta\alpha}  = B^{-1}_{w\beta} \cdot G_{w\beta\alpha}
(131) L_{W\beta\alpha} = B^{-1}_{w\beta} \cdot G_{w\beta\alpha} \cdot \delta p_{w\beta\alpha}
(132) T_{O\beta\alpha}  =  B^{-1}_{o\beta} \cdot   G_{o\beta\alpha} + R_{v\beta} \cdot B^{-1}_{g\beta} \cdot   G_{g\beta\alpha}
(133) L_{O\beta\alpha} = B^{-1}_{o\beta} \cdot   G_{o\beta\alpha} \cdot \delta p_{o\beta\alpha} \; + R_{v\beta} \cdot B^{-1}_{g\beta} \cdot   G_{g\beta\alpha} \cdot \delta p_{g\beta\alpha}
(134) T_{G\beta\alpha}  =   R_{s\beta} \cdot B^{-1}_{o\beta} \cdot G_{o\beta\alpha} + B^{-1}_{g\beta} \cdot   G_{g\beta\alpha}
(135) L_{G\beta\alpha} = R_{s\beta} \cdot B^{-1}_{o\beta} \cdot G_{o\beta\alpha} \cdot \delta p_{o\beta\alpha} \; + B^{-1}_{g\beta} \cdot   G_{g\beta\alpha} \cdot \delta p_{g\beta\alpha}


(136) p_{\alpha\beta} = \left ( T_{f\alpha\beta} - T_{f\beta\alpha} \right)^{-1} \cdot \left( T_{f\alpha\beta} \cdot p_\alpha - T_{f\beta\alpha} \cdot p_\beta - L_{f\alpha\beta} + L_{f\beta\alpha} \right)

(137) p_{\alpha\beta} = \eta_{w\alpha\beta} \cdot \left( T_{w\alpha\beta} \cdot p_\alpha - T_{w\beta\alpha} \cdot p_\beta - L_{w\alpha\beta} + L_{w\beta\alpha} \right)
(138) p_{\alpha\beta} = \eta_{o\alpha\beta} \cdot \left( T_{o\alpha\beta} \cdot p_\alpha - T_{o\beta\alpha} \cdot p_\beta - L_{o\alpha\beta} + L_{o\beta\alpha} \right)
(139) p_{\alpha\beta} = \eta_{g\alpha\beta} \cdot \left( T_{g\alpha\beta} \cdot p_\alpha - T_{g\beta\alpha} \cdot p_\beta - L_{g\alpha\beta} + L_{g\beta\alpha} \right)

(140) \eta_{w\alpha\beta} = \left ( T_{w\alpha\beta} - T_{w\beta\alpha} \right)^{-1} \; \text{if} \; |T_{w\alpha\beta} - T_{w\beta\alpha}| > \epsilon \; \text{else} \; 0, \quad \epsilon = \text{1e-12}
(141) \eta_{o\alpha\beta} = \left ( T_{o\alpha\beta} - T_{o\beta\alpha} \right)^{-1} \; \text{if} \; |T_{o\alpha\beta} - T_{o\beta\alpha}| > \epsilon \; \text{else} \; 0, \quad \epsilon = \text{1e-12}
(142) \eta_{g\alpha\beta} = \left ( T_{g\alpha\beta} - T_{g\beta\alpha} \right)^{-1} \; \text{if} \; |T_{g\alpha\beta} - T_{g\beta\alpha}| > \epsilon \; \text{else} \; 0, \quad \epsilon = \text{1e-12}


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Dynamic Flow Model Reservoir Flow Model (RFM) / Modified Black Oil Reservoir Flow @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model / Modified Black Oil fluid @model

Petroleum Industry / Upstream / Production / Subsurface Production / Well & Reservoir Management / Formation pressure / Multiphase formation pressure

[ Modified Black Oil Reservoir Flow Grid Computation @ algorithm ]




  • No labels