|
| (1) |
\epsilon = \text{1e-12} |
| | |
|
| (2) |
v_{\alpha\beta} = \frac{V_{\alpha\beta}}{V_{\alpha\beta} + V_{\beta\alpha}} |
| | |
|
| (3) |
COS2_{\alpha\beta} = \left( \bar n_{\alpha\beta} \cdot \; \bar e_{k\max} \right)^2 |
| | |
|
| (4) |
Rg_{\alpha\beta} = R_{\alpha\beta} \cdot g \cdot \sqrt{1-COS2_{\alpha\beta}} |
| | |
|
| (5) |
Rk_{11\alpha\beta} = R^{-1}_{\alpha\beta} \cdot \left( k_{\max\alpha\beta} \cdot COS2_{\alpha\beta} + k_{\min\alpha\beta} \cdot (1 - COS2_{\alpha\beta}) \right) |
| | |
|
| (6) |
\tilde B_w = \tilde B_w(T,p) = B_w |
|
| (7) |
\tilde B_o = \tilde B_o(T,p) = \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} |
|
| (8) |
\tilde B_g = \tilde B_g(T,p) = \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} |
|
|
| (9) |
c_\phi(p) = \left[ \, \text{table interpolation} \, \right ] |
or Dobrynin Pore compressibility-pressure @model :
| (10) |
\displaystyle c_\phi(p) = c_{\phi i} \cdot \frac{ \ln \left( \frac{ p_n }{p_{\rm max}} \right) }{ \ln \left( \frac{p_{ni}}{p_{\rm max}} \right) } |
| (11) |
p_n = p_{\rm min} + 1.75 \cdot \phi^{0.51} \cdot (p_{\rm max} - p) |
| (12) |
p_{ni} = p_{\rm min} + 1.75 \cdot \phi^{0.51} \cdot (p_{\rm max} - p_i) |
Wide pressure range: p min = 1 MPa < p < p max = 200 MPa
|
|
Initialization: t = 0
|
| (13) |
s^0_{w\alpha} = s_{wi\alpha} |
|
| (14) |
s^0_{o\alpha} = s_{oi\alpha} |
|
| (15) |
s^0_{g\alpha} = s_{gi\alpha} |
| |
| (16) |
V^0_{\phi\alpha} = V_\alpha \cdot \phi^0_\alpha, \quad \phi^0_\alpha = \phi^0_{i\alpha} |
|
| (17) |
V^0_{w\alpha} = s^0_{w\alpha} \cdot V^0_{\phi\alpha} |
|
| (18) |
V^0_{o\alpha} = s^0_{o\alpha} \cdot V^0_{\phi\alpha} |
|
| (19) |
V^0_{g\alpha} = s^0_{g\alpha} \cdot V^0_{\phi\alpha} |
|
|
| (20) |
V^0_{W\alpha} = \frac{V^0_{w\alpha}}{B_{wi}} |
|
| (21) |
V^0_{O\alpha} =\frac{V^0_o}{B_{oi}} + R_{vi} \cdot \frac{V^0_g}{B_{gi}} |
|
| (22) |
V^0_{G\alpha} =\frac{V^0_G}{B_{gi}} + R_{si} \cdot \frac{V^0_o}{B_{oi}} |
|
|
| (23) |
I^0_{W\alpha} = \frac{V^0_{W\alpha}}{V^0_{\phi\alpha}} |
|
| (24) |
I^0_{O\alpha} = \frac{V^0_{O\alpha}}{V^0_{\phi\alpha}} |
|
| (25) |
I^0_{G\alpha} = \frac{V^0_{G\alpha}}{V^0_{\phi\alpha}} |
|
|
| (26) |
p^0_{w\alpha} = p^0_\alpha + p_{cw}(s^0_\alpha) |
|
| (27) |
p^0_{o\alpha} = p^0_\alpha + p_{co}(s^0_\alpha) |
|
| (28) |
p^0_{g\alpha} = p^0_\alpha + p_{cg}(s^0_\alpha) |
|
|
| (29) |
U^0_{W\alpha\beta} = 0 |
|
| (30) |
U^0_{O\alpha\beta} = 0 |
|
| (31) |
U^0_{G\alpha\beta} = 0 |
|
|
| | |
|
Progression: t → t + 1
|
|
| Loop Over ▶ – ◀ |
|
| ▶ |
| Cross-Cell Face Saturation |
| (32) |
s^t_{w\alpha\beta}=s^t_{w\alpha} \cdot v_{\alpha\beta} + s^t_{w\beta}\cdot v_{\beta\alpha} |
|
| (33) |
s^t_{o\alpha\beta}=s^t_{o\alpha} \cdot v_{\alpha\beta} + s^t_{o\beta}\cdot v_{\beta\alpha} |
|
| (34) |
s^t_{g\alpha\beta}=s^t_{g\alpha} \cdot v_{\alpha\beta} + s^t_{g\beta}\cdot v_{\beta\alpha} |
|
|
Cell Relative Permeability |
| (35) |
k_{rw\alpha\beta} = k_{rw}(s^t_{\alpha\beta}) |
|
| (36) |
k_{ro\alpha\beta} = k_{ro}(s^t_{\alpha\beta}) |
|
| (37) |
k_{rg\alpha\beta} = k_{rg}(s^t_{\alpha\beta}) |
|
|
|
| (38) |
\mu_{w\alpha\beta} = \mu_w(p^t_{w\alpha\beta}) |
|
| (39) |
\mu_{o\alpha\beta} = \mu_o(p^t_{o\alpha\beta}) |
|
| (40) |
\mu_{g\alpha\beta} = \mu_g(p^t_{g\alpha\beta}) |
|
|
| | |
|
| (41) |
\rho_{w\alpha} = {\mathring \rho_W} \, \cdot I\!B^t_{w\alpha} |
|
| (42) |
\rho_{o\alpha} = \left( \mathring \rho_O + \mathring \rho_G \cdot R^t_{s\alpha} \right) \cdot I\!B^t_{o\alpha} |
|
| (43) |
\rho_{g\alpha} = \left( \mathring \rho_G + \mathring \rho_O \cdot R^t_{v\alpha} \right) \cdot I\!B^t_{g\alpha} |
|
|
Capillary and Gravity Cell Centre-to-Face Pressure Drop | | |
|
| (44) |
\delta p_{w\alpha\beta} = p_{cw}(s^t_{\alpha\beta}) - p_{cw}(s^t_{\alpha}) - \rho_{w\alpha} \cdot Rg_{\alpha\beta} |
|
| (45) |
\delta p_{o\alpha\beta} = p_{co}(s^t_{\alpha\beta}) - p_{co}(s^t_{\alpha}) - \rho_{o\alpha} \cdot Rg_{\alpha\beta} |
|
| (46) |
\delta p_{g\alpha\beta} = p_{cg}(s^t_{\alpha\beta}) - p_{cg}(s^t_{\alpha}) - \rho_{g\alpha} \cdot Rg_{\alpha\beta} |
|
|
Multiphase Cross-Cell Face Pressure |
| (47) |
p^t_{\alpha\beta} = s^t_{w\alpha\beta} \cdot p^t_{w\alpha \beta} + s^t_{o\alpha\beta} \cdot p^t_{o\alpha \beta} + s^t_{g\alpha\beta} \cdot p^t_{g\alpha \beta} |
|
| (48) |
k_{p\alpha\beta} = k_{\alpha\beta}(\phi^t_{\alpha \beta}) |
or
| (49) |
k_{p\alpha\beta} = \exp \left[ \; c_{k\alpha\beta} \cdot \left( p^t_{\alpha \beta} - p_{0\alpha \beta} \right) \; \right] |
|
| (50) |
kRk_{11\alpha\beta} = k_{p\alpha\beta} \cdot Rk_{11\alpha\beta} |
|
| (51) |
G_{W\alpha\beta} = \frac{k_{rw\alpha\beta}}{\mu_{w\alpha\beta}} \cdot kRk_{11\alpha\beta} |
|
| (52) |
G_{o\alpha\beta} = \frac{k_{ro\alpha\beta}}{\mu_{o\alpha\beta}} \cdot kRk_{11\alpha\beta} |
|
| (53) |
G_{g\alpha\beta} = \frac{k_{rg\alpha\beta}}{\mu_{g\alpha\beta}} \cdot kRk_{11\alpha\beta} |
|
|
| (54) |
T_{W\alpha\beta} = I\!B^t_{w\alpha} \cdot G_{w\alpha\beta} |
|
| (55) |
T_{O\alpha\beta} = I\!B^t_{o\alpha} \cdot G_{o\alpha\beta} + R_{v\alpha} \cdot I\!B^t_{g\alpha} \cdot G_{g\alpha\beta} |
|
| (56) |
T_{G\alpha\beta} = R_{s\alpha} \cdot I\!B^t_{o\alpha} \cdot G_{o\alpha\beta} + I\!B^t_{g\alpha} \cdot G_{g\alpha\beta} |
|
|
| (57) |
L_{W\alpha\beta} = I\!B^t_{w\alpha} \cdot G_{w\alpha\beta} \cdot \delta p_{w\alpha\beta} |
|
| (58) |
L_{O\alpha\beta} = I\!B^t_{o\alpha} \cdot G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \;
+ R_{v\alpha} \cdot I\!B^t_{g\alpha} \cdot G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta} |
|
| (59) |
L_{G\alpha\beta} = R_{s\alpha} \cdot I\!B^t_{o\alpha} \cdot G_{o\alpha\beta} \cdot \delta p_{o\alpha\beta} \;
+ I\!B^t_{g\alpha} \cdot G_{g\alpha\beta} \cdot \delta p_{g\alpha\beta} |
|
|
| (60) |
\eta_{w\alpha\beta} = \left ( T_{w\alpha\beta} - T_{w\beta\alpha} \right)^{-1} \quad \text{if} \; |T_{w\alpha\beta} - T_{w\beta\alpha}| > \epsilon \quad \text{else} \; 0 |
|
| (61) |
\eta_{o\alpha\beta} = \left ( T_{o\alpha\beta} - T_{o\beta\alpha} \right)^{-1} \quad \text{if} \; |T_{o\alpha\beta} - T_{o\beta\alpha}| > \epsilon \quad \text{else} \; 0 |
|
| (62) |
\eta_{g\alpha\beta} = \left ( T_{g\alpha\beta} - T_{g\beta\alpha} \right)^{-1} \quad \text{if} \; |T_{g\alpha\beta} - T_{g\beta\alpha}| > \epsilon \quad \text{else} \; 0 |
|
|
|
| (63) |
p^{t+1}_{w\alpha\beta} = \eta_{w\alpha\beta} \cdot \left( T_{w\alpha\beta} \cdot p_\alpha - T_{w\beta\alpha} \cdot p_\beta - L_{w\alpha\beta} + L_{w\beta\alpha} \right) |
|
| (64) |
p^{t+1}_{o\alpha\beta} = \eta_{o\alpha\beta} \cdot \left( T_{o\alpha\beta} \cdot p_\alpha - T_{o\beta\alpha} \cdot p_\beta - L_{o\alpha\beta} + L_{o\beta\alpha} \right) |
|
| (65) |
p^{t+1}_{g\alpha\beta} = \eta_{g\alpha\beta} \cdot \left( T_{g\alpha\beta} \cdot p_\alpha - T_{g\beta\alpha} \cdot p_\beta - L_{g\alpha\beta} + L_{g\beta\alpha} \right) |
|
|
|
| (66) |
U^{t+1}_{W\alpha\beta} = T_{W\alpha\beta} \cdot \left( p^{t+1}_{w\alpha\beta} - p_\alpha \right) + L_{W\alpha\beta} |
|
| (67) |
U^{t+1}_{O\alpha\beta} = T_{O\alpha\beta} \cdot \left( p^{t+1}_{o\alpha\beta} - p_\alpha \right) + L_{O\alpha\beta} |
|
| (68) |
U^{t+1}_{G\alpha\beta} = T_{G\alpha\beta} \cdot \left( p^{t+1}_{g\alpha\beta} - p_\alpha \right) + L_{G\alpha\beta} |
|
|
| Cell Influx |
| (69) |
\delta I^{t+1}_{W \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{W\alpha\beta} \; + \, q^{t+1}_{W\alpha} \right) |
|
| (70) |
\delta I^{t+1}_{O \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{O\alpha\beta} \; + \, q^{t+1}_{O\alpha} \right) |
|
| (71) |
\delta I^{t+1}_{G \alpha} = \frac{\delta t}{V^0_{\phi_\alpha}}\cdot \left(\sum_{\beta\in\Gamma_{\alpha}}A_{\alpha\beta}\cdot U^{t+1}_{G\alpha\beta} \; + \, q^{t+1}_{G\alpha} \right) |
|
|
|
|
| (72) |
I^{t+1}_{W \alpha} = I^t_{W \alpha} + \delta I^{t+1}_{W \alpha} |
|
| (73) |
I^{t+1}_{O \alpha} = I^t_{O \alpha} + \delta I^{t+1}_{O \alpha} |
|
| (74) |
I^{t+1}_{G \alpha} = I^t_{G \alpha} + \delta I^{t+1}_{G \alpha} |
|
|
Handle Fluid Component Depletion |
| (75) |
\text{if} \; I^{t+1}_{W \alpha} < 0 \; \Rightarrow \; I^{t+1}_{W \alpha} = 0 \; , \; \; \delta I^{t+1}_{W \alpha} = - I^t_{W \alpha} |
|
| (76) |
\text{if} \; I^{t+1}_{O \alpha} < 0 \; \Rightarrow \; I^{t+1}_{O \alpha} = 0 \; , \; \; \delta I^{t+1}_{O \alpha} = - I^t_{O \alpha} |
|
| (77) |
\text{if} \; I^{t+1}_{G \alpha} < 0 \; \Rightarrow \; I^{t+1}_{O \alpha} = 0 \; , \; \; \delta I^{t+1}_{G \alpha} = - I^t_{G \alpha} |
|
|
| (78) |
\delta t^*_{W\alpha\beta^-} =\frac{-I_{W\alpha}^t\cdot V_{\phi_{\alpha}}^0-\delta t \cdot\sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+} \cdot U^{t+1}_{W\alpha\beta^+}}{\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{W\alpha\beta^-} + q^{t+1}_{W\alpha}} |
|
| (79) |
\delta t^*_{O\alpha\beta^-} =\frac{-I_{O\alpha}^t\cdot V_{\phi_{\alpha}}^0-\delta t \cdot\sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+} \cdot U^{t+1}_{O\alpha\beta^+}}{\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{O\alpha\beta^-} + q^{t+1}_{O\alpha}} |
|
| (80) |
\delta t^*_{G\alpha\beta^-} =\frac{-I_{G\alpha}^t\cdot V_{\phi_{\alpha}}^0-\delta t \cdot\sum_{\beta^+\in\Gamma^+_{\alpha}}A_{\alpha\beta^+} \cdot U^{t+1}_{G\alpha\beta^+}}{\sum_{\beta^-\in\Gamma^-_{\alpha}}A_{\alpha\beta^-}\cdot U^{t+1}_{G\alpha\beta^-} + q^{t+1}_{G\alpha}} |
|
|
| (81) |
\tilde q^{t+1}_{W\alpha} = q^{t+1}_{W\alpha} \cdot \delta t^*_{W\alpha\beta^-}/\delta t |
| (82) |
\tilde U^{t+1}_{W\alpha\beta^-} = U^{t+1}_{W\alpha\beta^-} \cdot \delta t^*_{W\alpha\beta^-}/\delta t |
| (83) |
\tilde U^{t+1}_{W\beta^-\alpha} = \tilde U^{t+1}_{W\alpha\beta^-} |
|
| (84) |
\tilde q^{t+1}_{O\alpha} = q^{t+1}_{O\alpha} \cdot \delta t^*_{O\alpha\beta^-}/\delta t |
| (85) |
\tilde U^{t+1}_{O\alpha\beta^-} = U^{t+1}_{O\alpha\beta^-} \cdot \delta t^*_{O\alpha\beta^-}/\delta t |
| (86) |
\tilde U^{t+1}_{O\beta^-\alpha} = \tilde U^{t+1}_{O\alpha\beta^-} |
|
| (87) |
\tilde q^{t+1}_{G\alpha} = q^{t+1}_{G\alpha} \cdot \delta t^*_{G\alpha\beta^-}/\delta t |
| (88) |
\tilde U^{t+1}_{G\alpha\beta^-} = U^{t+1}_{G\alpha\beta^-} \cdot \delta t^*_{G\alpha\beta^-}/\delta t |
| (89) |
\tilde U^{t+1}_{G\beta^-\alpha} = \tilde U^{t+1}_{G\alpha\beta^-} |
|
|
|
| (90) |
\tilde B_w \left( p^{t+1}_\alpha + p_{cw}(s^t_\alpha) \right) \cdot I^{t+1}_{W\alpha} \, + \, \tilde B_o \left( p^{t+1}_\alpha + p_{co}(s^t_\alpha) \right) \cdot I^{t+1}_{O\alpha} \, + \, \tilde B_g \left( p^{t+1}_\alpha + p_{cg}(s^t_\alpha) \right) \cdot I^{t+1}_{G\alpha} - \exp \left( c_{\phi_\alpha}(p^{t+1}_\alpha) \cdot (p^{t+1}_\alpha - p^0_\alpha) \right) = 0 |
|
| (91) |
p^{t+1}_{w\alpha} = p^{t+1}_\alpha + p_{cw}(s^t_\alpha) |
|
| (92) |
p^{t+1}_{o\alpha} = p^{t+1}_\alpha + p_{co}(s^t_\alpha) |
|
| (93) |
p^{t+1}_{g\alpha} = p^{t+1}_\alpha + p_{cg}(s^t_\alpha) |
| |
| PVT properties |
| (94) |
B^{t+1}_{w\alpha} = B_w ( T^{t+1}_\alpha, \, p^{t+1}_{w\alpha}) |
|
| (95) |
B^{t+1}_{o\alpha} = B_o ( T^{t+1}_\alpha, \, p^{t+1}_{o\alpha}) |
|
| (96) |
B^{t+1}_{g\alpha} = B_g ( T^{t+1}_\alpha, \, p^{t+1}_{g\alpha}) |
|
| (97) |
I\!B^{t+1}_{w\alpha} = \left[ B^{t+1}_{w\alpha} \right]^{-1} |
|
| (98) |
I\!B^{t+1}_{o\alpha} = \left[ B^{t+1}_{o\alpha} \right]^{-1} |
|
| (99) |
I\!B^{t+1}_{g\alpha} = \left[ B^{t+1}_{g\alpha} \right]^{-1} |
|
|
| (100) |
R^{t+1}_{v\alpha} = R_v(p^{t+1}_\alpha) |
|
| (101) |
R^{t+1}_{s\alpha} = R_s(p^{t+1}_\alpha) |
|
| (102) |
RR^{t+1}_{\alpha} = 1 - R^{t+1}_{v\alpha} \, R^{t+1}_{s\alpha} |
|
| (103) |
BB^{t+1}_{o\alpha} = \frac{B^{t+1}_{o\alpha}}{RR^{t+1}_{\alpha}} |
|
| (104) |
BB^{t+1}_{g\alpha} = \frac{B^{t+1}_{g\alpha}}{RR^{t+1}_{\alpha}} |
|
| (105) |
\tilde B^{t+1}_{w\alpha} = \tilde B_w (T^{t+1}_\alpha, p^{t+1}_{w\alpha}) |
|
| (106) |
\tilde B^{t+1}_{o\alpha} = \tilde B_o (T^{t+1}_\alpha, p^{t+1}_{o\alpha}) |
|
| (107) |
\tilde B^{t+1}_{g\alpha} = \tilde B_{g} (T^{t+1}_\alpha, p^{t+1}_{g\alpha}) |
|
| Fluid Component Volumes |
| (108) |
V^{t+1}_{W\alpha} = V^0_{\phi\alpha} \cdot I^{t+1}_{W\alpha} |
|
| (109) |
V^{t+1}_{O\alpha} = V^0_{\phi\alpha} \cdot I^{t+1}_{O\alpha} |
|
| (110) |
V^{t+1}_{G\alpha} = V^0_{\phi\alpha} \cdot I^{t+1}_{G\alpha} |
|
|
Reservoir Phase Volumes |
| (111) |
V^{t+1}_{w\alpha} = B_w(p^{t+1}_\alpha) \cdot V^{t+1}_{W\alpha} |
|
| (112) |
V^{t+1}_{o\alpha} = BB^{t+1}_{o\alpha} \cdot \left( \, V^{t+1}_{O\alpha} - R^{t+1}_{v\alpha} \cdot V^{t+1}_{G\alpha} \, \right) |
|
| (113) |
V^{t+1}_{g\alpha} = BB^{t+1}_{g\alpha} \cdot \left(\, V^{t+1}_{G\alpha} - R^{t+1}_{s\alpha} \cdot V^{t+1}_{O\alpha} \, \right) |
|
|
| (114) |
V^{t+1}_{\phi\alpha} = V^{t+1}_{w\alpha} + V^{t+1}_{o\alpha} + V^{t+1}_{g\alpha} |
|
|
| (115) |
s^{t+1}_{w\alpha} = \frac{V^{t+1}_{w\alpha}}{V^{t+1}_{\phi\alpha}} |
|
| (116) |
s^{t+1}_{o\alpha} = \frac{V^{t+1}_{o\alpha}}{V^{t+1}_{\phi\alpha}} |
|
| (117) |
s^{t+1}_{g\alpha} = \frac{V^{t+1}_{g\alpha}}{V^{t+1}_{\phi\alpha}} |
| |
| ◀ |