Page tree

Given:

  • a function  y^*(x, {\bf p}) of the argument  x and set of model parameters  {\bf p} = \{ p_m\}_{m = 1..M} = \{p_1, p_2, ... p_M\}
  • a discrete finite training dataset\{ (x_k, y_k)\}_{k = 1..N} = \{ (x_0, y_0), (x_1, y_1), ..., (x_N, y_N) \} representing the available knowledge about the system the model is trying to describe

then matching procedure assumes searching for the specific set of model parameters  {\bf p}_{\rm bestfit} to minimize the goal function:

G({\bf p}) = \sum_{k=1}^N \, \Psi \left( y^*(x_k) - y_k \right) \rightarrow \textrm{min} \ \Longleftrightarrow \ {\bf p} = {\bf p}_{\rm bestfit}

where  \Psi(z) is the discrepancy distance function.

The most popular choices are \Psi(z) = z^2 and \Psi(z) = |z|.


See also


Human / Science / Formal Science / System Science / System Model



  • No labels