Ratio of field-wide oil production rate q_O to the water injection rate q_{WI}:
(1) | {\rm PIR} = \frac{q^{\uparrow}_O}{q^{\downarrow}_{WI}} |
It measures how efficiently waterflood supports the oil production and represent one of the key Waterflood Diagnostics.
When gas injection is not present ( q^{\downarrow}_{GI} = 0) the PIR can be related to the current Instantaneous Voidage Replacement Ratio (IVRR) as:
(2) | {\rm PIR}= \frac{1}{\rm IVRR} \cdot \frac{1-Y_w}{Y_w + (1-Y_w) \, \left[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( {\rm GOR} - R_s) \right] } = \frac{1}{\rm IVRR} \cdot \frac{1}{{\rm WOR} + \, \left[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( {\rm GOR} - R_s) \right] } |
(see (Instantaneous Voidage Replacement Ratio = IVRR:3) for derivation).
For the Balanced waterflood:
(3) | {\rm PIR}= \frac{1}{{\rm WOR} + \, \left[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( {\rm GOR} - R_s) \right] } |
and for those above bubble point pressure ( p > p_b \Leftrightarrow GOR = R_s):
(4) | {\rm PIR}= \frac{1}{{\rm WOR} + \frac{B_o}{B_w}} |
The equation (4) is often used for predicting the upper limit of oil production increase in response to the water injection:
(5) | q^{\uparrow}_O = {\rm PIR} \cdot q^{\downarrow}_{WI} = \frac{q^{\downarrow}_{WI}}{{\rm WOR} + \frac{B_o}{B_w}} |
For the waterless period of Balanced waterflood project \textrm{WOR}= 0 and:
(6) | q^{\uparrow}_O = {\rm PIR} \cdot q^{\downarrow}_{WI} = \frac{B_w}{B_o} \cdot q^{\downarrow}_{WI} |
See Also
Petroleum Industry / Upstream / Production / Subsurface Production / Field Study & Modelling / Production Analysis / Waterflood Diagnostics
[ Cumulative PIR ]