Page tree


Ratio of field-wide oil production rate  q_O to the water injection rate  q_{WI}:

(1) {\rm PIR} = \frac{q^{\uparrow}_O}{q^{\downarrow}_{WI}}


It measures how efficiently waterflood supports the oil production and represent one of the key Waterflood Diagnostics.


When gas injection is not present ( q^{\downarrow}_{GI} = 0) the PIR can be related to the current Instantaneous Voidage Replacement Ratio (IVRR) as:

(2) {\rm PIR}= \frac{1}{\rm IVRR} \cdot \frac{1-Y_w}{Y_w + (1-Y_w) \, \left[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( {\rm GOR} - R_s) \right] } = \frac{1}{\rm IVRR} \cdot \frac{1}{{\rm WOR} + \, \left[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( {\rm GOR} - R_s) \right] }

(see  (Instantaneous Voidage Replacement Ratio = IVRR:3) for derivation).

For the Balanced waterflood:

(3) {\rm PIR}= \frac{1}{{\rm WOR} + \, \left[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( {\rm GOR} - R_s) \right] }

and for those above bubble point pressure ( p > p_b \Leftrightarrow GOR = R_s):

(4) {\rm PIR}= \frac{1}{{\rm WOR} + \frac{B_o}{B_w}}


The equation  (4) is often used for predicting the upper limit of oil production increase in response to the water injection:

(5) q^{\uparrow}_O = {\rm PIR} \cdot q^{\downarrow}_{WI} = \frac{q^{\downarrow}_{WI}}{{\rm WOR} + \frac{B_o}{B_w}}


For the waterless period of Balanced waterflood project \textrm{WOR}= 0 and:

(6) q^{\uparrow}_O = {\rm PIR} \cdot q^{\downarrow}_{WI} = \frac{B_w}{B_o} \cdot q^{\downarrow}_{WI}


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling /  Production Analysis / Waterflood Diagnostics

[ Cumulative PIR ]



  • No labels