Page tree


Specific type of production rate  q(t) decline:

(1) q(t) = \frac{q_0}{ \left( 1+b \cdot D_0 \cdot t \right)^{1/b} }
(2) Q(t)=\frac{q_0}{D_0 \, (1-b)} \, \left[ 1- \left( \frac{q(t)}{q_0} \right)^{1-b} \right]
(3) Q_{\rm max}=\frac{q_0}{D_0 \cdot (1-b)}
(4) D(t) = \frac{D_0}{1+ b \cdot D_0 \cdot t}

where

q_0 = q(t=0)

Initial production rate of a well (or groups of wells)

D_0 > 0

0 < b < 1

model parameter characterizing the decline rate

\displaystyle Q(t)=\int_0^t q(t) \, dt

cumulative production by the time moment  t

Q_{\rm max} =\int_0^{\infty} q(t) \, dt

Estimated Ultimate Recovery (EUR)

\displaystyle D(t) = - \frac{dq}{dQ}

Production decline rate


It can be applied to any fluid production: water, oil or gas. 

Hyperbolic Production Decline is an empirical correlation for production from a finite-reserves  Q_{\rm max} \leq \infty reservoir.  

The Production decline rate is starting at its maximum  D_0 and then gradually reduces to zero.


A typical example of various fitting efforts of Hyperbolic Production Decline are brought on Fig. 1 – Fig. 3 with hyperbolic fitting being a clear winner.

Fig. 1. Exponential best fit to Hyperbolic Production DeclineFig. 2. Hyperbolic best fit to Hyperbolic Production DeclineFig. 3. Harmonic best fit to Hyperbolic Production Decline


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Decline Curve Analysis

DCA Arps @model ] [ Production decline rate ]

  • No labels