Page tree

Oil correlations based on North Sea oil samples.

Bubble point pressurepbpsia

\displaystyle \log_{10}(p_b) = c_1 + c_2 \, \log_{10}(p^*_b) + c_3 \, [\log_{10}(p^*_b) ]^2\displaystyle p^*_b = \left( R_{sb}/\gamma_g \right)^{c_4} \, \gamma_{API}^{c_5} \, T^{c_6}

c_1 = 1.7669, \ c_2 = 1.7447, \ c_3 = -0.30218, \ c_4 = 0.816, \ c_5 = -0.989

\mbox{Black Oil: } c_6 = 0.172 , \mbox{Volatile Oil: } c_6 = 0.130


Saturated oil gas solubility


Rsscf/stbp ≤ pb

\displaystyle R_s(p, T) = \gamma_g \cdot \big[ \gamma_{API}^{-c_5} \, T^{-c_6} \, p_b^* \big]^{1/c_4}\displaystyle p^*_b = 10^X, \quad X = (0.5/c_3) \cdot \left( -c_2 + \sqrt{c_2^2 - 4 \, c _3 \, \big( c_1- \log_{10}(p) \big)} \right)

c_1 = 1.7669, \ c_2 = 1.7447, \ c_3 = -0.30218, \ c_4 = 0.816, \ c_5 = -0.989

\mbox{Black Oil: } c_6 = 0.172 , \mbox{Volatile Oil: } c_6 = 0.130


Saturated oil formation volume factor

Bobbl/stbp ≤ pb

\displaystyle B_o(p, T) = 1.0 + 10^A, \quad A = c_1 + c_2 \, \log_{10} B^*_{ob} + c_3 \, \left( \log_{10} B^*_{ob} \right)^2

B^*_{ob} = R_s(p, T) \, \left( \frac{\gamma_g}{\gamma_o} \right)^{c_4} + c_5 \, T

c_1 = -6.58511, \ c_2 = 2.91329, \ c_3 = -0.27683, \ c_4 =0.526, \ c_5 = 0.968


Dead oil viscosity

μocpdead

\displaystyle \mu_{od}(T) = c_1 \, T^{c_2} \, \big[ \log_{10}(\gamma_{API}) \big]^aa = c_3 \, \log_{10}(T) + c_4
c_1 =3.141 \cdot 10^{10}, \ c_2 = - 3.444, \ c_3 = 10.313, \ c_4 = -36.447

where

LocationNorth Sea

p

psiaFluid pressure

T

°FInitial formation temperature

\gamma_{API}

°APIOil API gravity

\gamma_o

fracOil specific gravity

\gamma_g

fracGas specific gravity


See Also


Petroleum Industry / Upstream / Petroleum Engineering / Subsurface E&P Disciplines / Reservoir Engineering (RE) / PVT correlations / Oil correlations

References


Glaso, Oistein. "Generalized Pressure-Volume-Temperature Correlations." J Pet Technol 32 (1980): 785–795. doi: https://doi.org/10.2118/8016-PA





  • No labels