Oil correlations based on North Sea oil samples.
Bubble point pressure | pb | psia | \displaystyle \log_{10}(p_b) = c_1 + c_2 \, \log_{10}(p^*_b) + c_3 \, [\log_{10}(p^*_b) ]^2, \displaystyle p^*_b = \left( R_{sb}/\gamma_g \right)^{c_4} \, \gamma_{API}^{c_5} \, T^{c_6} c_1 = 1.7669, \ c_2 = 1.7447, \ c_3 = -0.30218, \ c_4 = 0.816, \ c_5 = -0.989 \mbox{Black Oil: } c_6 = 0.172 , \mbox{Volatile Oil: } c_6 = 0.130 | |
---|---|---|---|---|
Rs | scf/stb | p ≤ pb | \displaystyle R_s(p, T) = \gamma_g \cdot \big[ \gamma_{API}^{-c_5} \, T^{-c_6} \, p_b^* \big]^{1/c_4}, \displaystyle p^*_b = 10^X, \quad X = (0.5/c_3) \cdot \left( -c_2 + \sqrt{c_2^2 - 4 \, c _3 \, \big( c_1- \log_{10}(p) \big)} \right) c_1 = 1.7669, \ c_2 = 1.7447, \ c_3 = -0.30218, \ c_4 = 0.816, \ c_5 = -0.989 \mbox{Black Oil: } c_6 = 0.172 , \mbox{Volatile Oil: } c_6 = 0.130 | |
Bo | bbl/stb | p ≤ pb | \displaystyle B_o(p, T) = 1.0 + 10^A, \quad A = c_1 + c_2 \, \log_{10} B^*_{ob} + c_3 \, \left( \log_{10} B^*_{ob} \right)^2 B^*_{ob} = R_s(p, T) \, \left( \frac{\gamma_g}{\gamma_o} \right)^{c_4} + c_5 \, T c_1 = -6.58511, \ c_2 = 2.91329, \ c_3 = -0.27683, \ c_4 =0.526, \ c_5 = 0.968 | |
μo | cp | dead |
\displaystyle \mu_{od}(T) = c_1 \, T^{c_2} \, \big[ \log_{10}(\gamma_{API}) \big]^a,
a = c_3 \, \log_{10}(T) + c_4 |
where
Location | North Sea | |
p | psia | Fluid pressure |
T | °F | Initial formation temperature |
\gamma_{API} | °API | Oil API gravity |
\gamma_o | frac | Oil specific gravity |
\gamma_g | frac | Gas specific gravity |
See Also
Petroleum Industry / Upstream / Petroleum Engineering / Subsurface E&P Disciplines / Reservoir Engineering (RE) / PVT correlations / Oil correlations