Page tree

@wikipedia


The momentum balance equation relating a pressure gradient  \nabla p in porous medium with induced fluid flow (percolation) with velocity  \bf u

(1) - \nabla p = \frac{\mu}{k} \, {\bf u} + \beta \, \rho \, | {\bf u} | \, {\bf u}

where

k

formation permeability 

\mu

fluid viscosity

\beta

Forchheimer coefficient


Forchheimer coefficient depends on flow regime and formation permeability as:

(2) \beta = \frac{C_E}{\sqrt{k}}

where  C_E is dimensionless quantity called Ergun constant accounting for inertial (kinetic) effects and depending on flow regime only.

  C_E is small for slow percolation (thus reducing Forchheimer equation to Darcy equation) and grows quickly with high flow velocities.


Forchheimer equation can be approximated by non-linear permeability model as:

(3) {\bf u} = - \frac{k}{\mu} \, k_f \, \nabla p
(4) k_f(|\nabla p|) = \frac{2}{w} \big[ 1- \sqrt{1-w} \big]
(5) w = 4 \, \left(\frac{k}{\mu} \right)^2 \, \beta \, \rho \, |\nabla p| \, < \, 1


See also


Physics /  Fluid Dynamics / Percolation

Darcy Flow Equation ]

Reference


 Philipp Forchheimer (1886). "Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen". Z. Architekt. Ing.-Ver. Hannover. 32: 539–563.




  • No labels