Page tree

Specific type of production rate  q(t) decline:

(1) q(t)=q_0 \exp \left( -D_0 \, t \right)
(2) Q(t)=\frac{q_0-q(t)}{D_0}
(3) Q_{\rm max}=\frac{q_0}{D_0}
(4) D(t)=D_0 = \rm const

where

q_0 = q(t=0)

Initial production rate of a well (or groups of wells)

D_0 > 0

initial Production decline rate which in this specific case stays consant:  D(t) = D_0 = \rm const

\displaystyle Q(t)=\int_0^t q(t) \, dt

cumulative production by the time moment  t

Q_{\rm max} =\int_0^{\infty} q(t) \, dt

Estimated Ultimate Recovery (EUR)

\displaystyle D(t) = - \frac{dq}{dQ}

Production decline rate


It can be applied to any fluid production: 
water, oil or gas. 

Exponential Production Decline has a physical meaning of producing from the finite-volume reservoir with finite reserves  Q_{\rm max} under Pseudo Steady State (PSS) conditions, resulting in constant Production decline rate  D(t) = D_0 = \rm const.


A typical example of various fitting efforts of Exponential Production Decline are brought on Fig. 1 – Fig. 3 with exponential fitting being a clear winner.

Fig. 1. Exponential best fit to Exponential Production DeclineFig. 2. Hyperbolic best fit to Exponential Production DeclineFig. 3. Harmonic best fit to Exponential Production Decline


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Decline Curve Analysis

DCA Arps @model ] [ Production decline rate ]

  • No labels