Page tree

@wikipedia


Momentum equation for Inviscid fluid flow (a partial case of Navier–Stokes equation):

(1) \frac{\partial {\bf u}}{\partial t} + ({\bf u} \cdot \nabla) {\bf u} = - \frac{1}{\rho} \, \nabla p + {\bf g} +\frac{1}{\rho} \cdot {\bf f}_{\rm cnt}

where

{\bf u}

fluid velocity

\rho

fluid density

\nu

fluid kinematic viscosity

{\bf g}

resulting specific body force exerted on fluid body

{\bf f}_{\rm cnt}

volumetric density of all contact forces exerted on fluid body

Approximations




Transient 1D Inviscid fluid flow

(2) \rho \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial l} \right)= -\frac{\partial p}{\partial l} + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}

Steady-state 1D inviscid fluid flow

(3) \frac{d p}{d l} = -\rho \, u \, \frac{d u}{d l} + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}

Bernoulli equation =
Steady-state 1D inviscid fluid flow of incompressible fluid with no friction
(4) \frac{p(l)}{\rho} + \frac{u^2}{2} - g \cdot z(l) = \rm const


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid flow / Navier–Stokes equation

Bernoulli equation ]



  • No labels