Page tree

@wikipedia


Momentum equation for fluid flow :

(1) \frac{\partial {\bf u}}{\partial t} + ({\bf u} \cdot \nabla) {\bf u} = - \frac{1}{\rho} \nabla p +\nu \cdot \nabla^2 {\bf u} + \frac{1}{3} \cdot \nu \cdot \nabla (\nabla {\bf u}) + {\bf g} + \frac{1}{\rho}{\bf f}_{\rm cnt}

where

\rho

fluid density

\nu

fluid kinematic viscosity

{\bf g}

volumetric density of all body forces exerted on fluid body

{\bf f}_{\rm cnt}

volumetric density of all contact forces exerted on fluid body


In case of inviscid flow it simplifies to 

Approximations



\mu = 0

\nabla {\bf u} =0

(2) \frac{\partial {\bf u}}{\partial t} + ({\bf u} \cdot \nabla) {\bf u}= -\frac{1}{\rho} \, \nabla p + {\bf g} +\frac{1}{\rho} \, {\bf f}_{\rm cnt}
(3) \frac{\partial {\bf u}}{\partial t} + ({\bf u} \cdot \nabla) {\bf u} = - \frac{1}{\rho} \, \nabla p +\nu \nabla^2 {\bf u} + {\bf g} + \frac{1}{\rho} \, {\bf f}_{\rm cnt}


See also


Physics / Fluid Dynamics

Inviscid fluid flow (Euler equation) ] [ Incompressible fluid flow ] [ Euler equation ]

  • No labels