Page tree


Fig. 1. Dual-layer well schematic



(1) q = q_1 + q_2
(2) p_{wf} = p_e - q/J
(3) J = J_1 + J_2
(4) p_e = \frac{J_1 \cdot p_1 + J_2 \cdot (p_2- \delta p_2)}{J_1 + J_2}

where

Well

q

total subsurface flowrate of the well

J

total well productivity Index

p_e

apparent formation pressure of dual-layer formation
Layer #1

p_{wf} = p_{wf, 1}

bottom-hole pressure at Layer #1 top

q_1

total subsurface flowrate of the Layer #1

p_1

formation pressure of the Layer #1

J_1

productivity Index of the Layer #1
Layer #2

p_{wf2} = p_{wf} + \delta p_2

bottom-hole pr4essure at Layer #2 top

\delta p_2

wellbore pressure loss between the tips of two layers

q_2

total subsurface flowrate of the Layer #2

p_2

formation pressure of the Layer #2

J_2

productivity Index of the Layer #2


In many practical cases one can safely assume:

(5) \delta p_2 = \rho \, g \, h

where

\rho

wellbore fuid density

g

gravity constant

h = TVDSS_1 - TVDSS_2

true vertical height between  k-th layer and reference layer  k_{reff}


The above equations are valid for both producers  q>0 and injectors q<0.


(6) p_{wf, 1} = p_{wf} = p_1 - q_1/J_1
(7) p_{wf,2} = p_{wf} + \delta p_2 = p_2 - q_2/J_2

This leads to

(8) q_1 = J_1 \cdot (p_1 - p_{wf})
(9) q_2 = J_2 \cdot (p_2 - p_{wf,2}) = J_2 \cdot ((p_2-\delta p_2)- p_{wf})

and

(10) q = q_1 + q_2 = q_1 = J_1 \cdot (p_1 - p_{wf})+ J_2 \cdot ((p_2-\delta p_2)- p_{wf})
(11) q = - (J_1+J_2)\cdot p_{wf} + J_1 \cdot p_1 + J_2 \cdot (p_2-\delta p_2)

or

(12) q = J \cdot (p_e - p_{wf}), \ {\rm where} \ J = J_1 + J_2 \ {\rm and} \ p_e = J^{-1} \cdot (J_1 \cdot p_1 + J_2 \cdot (p_2-\delta p_2))

See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Subsurface E&P Disciplines / Field Study & Modelling / Production Analysis / Productivity Diagnostics

Production Technology / Well Flow Performance ]

Formation pressure (Pe) ] Multi-layer IPR ]


  • No labels