Page tree

We start with reservoir pressure diffusion outside wellbore:

(1) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
(2) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

\Sigma_k

well-reservoir contact of the  k-th well

d {\bf \Sigma}

normal vector of differential area on the well-reservoir contact, pointing inside wellbore


Then use the following equality:

(3) d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} + \frac{d \rho }{\rho} \right) = \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) = \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

to arrive at:

(4) \rho \, \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
(5) \int_{\Sigma_k} \, {\bf u} \, d {\bf A} = q_k(t)

where

c_t = с_\phi+ c


Let's assume Darcy flow with constant permeability  \displaystyle \frac{dk}{dp} = 0 and ignore gravity forces:

(6) {\bf u} = \frac{k}{\mu} \nabla \, p

so that diffusion equation becomes:

(7) \rho \, \phi \, c_t \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{\rho}{\mu} \, \nabla \, p) = 0
(8) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot d {\bf A} = q_k(t)

Let's express the density via Z-factor:

(9) \rho = \frac{M}{RT} \, \frac{p}{Z(p)}

where

T

fluid temperature

M

molar mass of a fluid

R

gas constant

and assuming the fluid temperature  T does not change over time and space during the modelling period:

(10) \phi \, c_t \, \mu \cdot \frac{p}{\mu \, Z} \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{p}{\mu \, Z} \, \nabla \, p) = 0
(11) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot d {\bf A} = q_k(t)

or

(12) \phi \, c_t \, \mu \cdot \frac{\partial \Psi}{\partial t} + \nabla \, ( k \cdot \nabla \, \Psi) = 0
(13) \frac{k}{\mu} \cdot \int_{\Sigma_k} \, {\bf \nabla } \, p \cdot d {\bf A} = q_k(t)

where

\displaystyle \Psi(p) =2 \, \int_0^p \frac{p \, dp}{\mu(p) \, Z(p)}

Pseudo-Pressure


In some practical cases the complex  c_t \, \mu  can be considered as constant in time which makes   (12) a linear differential equation.

But during the early transition times the pressure drop is usually high and the complex  c_t \, \mu  can not be considered as constant in time which leads to distortion of pressure transient diagnostics at early times.

In this case one can use Pseudo-Time, calculated by means of the bottom-hole pressure p_{BHP}(t):

(14) \tau(t) = \int_0^t \frac{dt}{\mu (p_{BHP} ) \, c_t (p_{BHP}) } \, , \ \  p_{BHP} = p_{BHP}(t)

to correct early-time transient  behaviour which turn equation (12) into:

(15) \phi \cdot \frac{\partial \Psi}{\partial \tau} + \nabla \, ( k \cdot \nabla \, \Psi) = 0



See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Pseudo-linear pressure diffusion @model



  • No labels