The base driving equations of a pipe flow are:
Steady-state 1D inviscid fluid flow | Pipe Flow Mass Conservation | ||||
|
| ||||
Equation of State (EOS) | Darcy–Weisbach | ||||
|
|
where
l | distance along the fluid flow streamline |
\theta(l) | inclinational deviation, \displaystyle \cos \theta = dz/dl |
z(l) | elevation along the 1D flow trajectory |
T(l) | fluid temperature |
p(l) | fluid pressure |
\rho(l) | fluid density |
{\bf u}(l) | fluid velocity vector |
u(l) | superficial velocity of the pipe flow |
{\bf f}_{\rm cnt}(l) | volumetric density of all contact forces exerted on fluid body |
f_{\rm cnt, l}(l) = {\bf e}_u \cdot {\bf f}_{\rm cnt} | |
j_m = \rho(l) \cdot u(l) | fluid mass flux |
\dot m | mass flowrate |
g | standard gravity constant |
Substituting (2) and (4) into (1):
(5) | \frac{d p}{d l} = -j_m \cdot \frac{d}{d l} \left( \frac{j_m}{\rho} \right) + \rho \, g \, \cos \theta - f \cdot \frac{ \rho \, }{2 d} \cdot \left( \frac{j_m}{\rho} \right)^2 |
(6) | \frac{d p}{d l} = j^2_m \cdot \frac{1}{\rho^2} \frac{d \rho}{dl} + \rho \, g \, \cos \theta - \frac{j_m^2}{2 d} \cdot \frac{f}{\rho} |
(7) | \frac{d p}{d l} = j^2_m \cdot \frac{1}{\rho^2} \frac{d \rho}{dp} \cdot \frac{d p}{dl} + \rho \, g \, \cos \theta - \frac{j_m^2}{2 d} \cdot \frac{f}{\rho} |
(8) | \frac{d p}{d l} = j^2_m \cdot \frac{1}{\rho} \cdot c \cdot \frac{d p}{dl} + \rho \, g \, \cos \theta - \frac{j_m^2}{2 d} \cdot \frac{f}{\rho} |
and finally
(9) | \left( 1 - j_m^2 \cdot \frac{c}{\rho} \right ) \frac{dp}{dl} = \rho \, g \, \cos \theta - \frac{j_m^2 }{2 d} \cdot \frac{f}{\rho} |
Alternative forms
|
|
See Also
Petroleum Industry / Upstream / Pipe Flow Simulation / Water Pipe Flow @model / Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model
[ Darcy friction factor ] [ Darcy friction factor @model ]
[ Euler equation ]