Page tree


Foundation


(1) \frac{\partial \, m_W}{dt} + \int\rho_{Ww} \cdot\, \bar u_w \, d \bar \Sigma = \frac{d m^*_W}{dt}
(2) \frac{\partial \, m_O}{dt} + \int \left( \rho_{Oo} \cdot \, \bar u_o + \rho_{Og} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_O}{dt}
(3) \frac{\partial \, m_G}{dt} + \int \left( \rho_{Go} \cdot \, \bar u_o + \rho_{Gg} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_G}{dt}


(4) \rho_{Ww} = \frac{m_W}{V_w} = \frac{m_W}{V_W} \cdot \frac{V_W}{V_w} = \frac{\mathring \rho_W}{B_w}
(5) \rho_{Oo} = \frac{m_{Oo}}{V_o} = \frac{m_{Oo}}{V_O} \cdot \frac{V_O}{V_o} = \frac{\mathring \rho_O}{B_o}
(6) \rho_{Og} = \frac{m_{Og}}{V_g} = \frac{m_{Og}}{V_{Og}} \cdot \frac{V_{Og}}{V_G} \cdot \frac{V_G}{V_g} = \frac{\mathring \rho_O \cdot R_v}{B_g}
(7) \rho_{Go} = \frac{m_{Go}}{V_o} = \frac{m_{Go}}{V_{Go}} \cdot \frac{V_{Go}}{V_O} \cdot \frac{V_O}{V_o} = \frac{\mathring \rho_G \cdot R_s}{B_o}
(8) \rho_{Gg} = \frac{m_{Gg}}{V_g} = \frac{m_{Gg}}{V_G} \cdot \frac{V_G}{V_g} = \frac{\mathring \rho_G}{B_g}


(9) \frac{\partial \, m_W}{dt} + \mathring \rho_W \int \frac{1}{B_w} \, \bar u_w \, d \bar \Sigma = \frac{d m^*_W}{dt}
(10) \frac{\partial \, m_O}{dt} + \mathring \rho_O \int \left( \frac{1}{B_o} \cdot \, \bar u_o + \frac{R_v}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_O}{dt}
(11) \frac{\partial \, m_G}{dt} + \mathring \rho_G \int \left( \frac{R_s}{B_o} \cdot \, \bar u_o + \frac{1}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = \frac{d m^*_G}{dt}


(12) V_W = \mathring \rho_W^{\. -1} \cdot m_W
(13) V_O = \mathring \rho_O^{-1} \cdot m_O
(14) V_G = \mathring \rho_G^{-1} \cdot m_G


(15) q_W = \mathring \rho_W^{-1} \cdot \frac{d m^*_W}{dt}
(16) q_O = \mathring \rho_O^{-1} \cdot \frac{d m^*_O}{dt}
(17) q_G = \mathring \rho_G^{-1} \cdot \frac{d m^*_G}{dt}



Differential Equation


(18) \frac{\partial \, V_W}{dt} + \int \frac{1}{B_w} \, \bar u_w \, d \bar \Sigma = q_W
(19) \frac{\partial \, V_O}{dt} + \int \left( \frac{1}{B_o} \cdot \, \bar u_o + \frac{R_v}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = q_O
(20) \frac{\partial \, V_G}{dt} + \int \left( \frac{R_s}{B_o} \cdot \, \bar u_o + \frac{1}{B_g} \cdot \, \bar u_g \right) d \bar \Sigma = q_G


(21) V_w = B_w \cdot V_W
(22) V_o =\frac{B_o}{1-R_s \, R_v} \cdot (V_O - R_v \, V_G)
(23) V_g =\frac{B_g}{1-R_s \, R_v} \cdot (V_G - R_s \, V_O)
(24) V_\phi = V_w + V_o + V_g
(25) s_w = \frac{V_w}{V_\phi}
(26) s_o = \frac{V_o}{V_\phi}
(27) s_g = \frac{V_g}{V_\phi}
(28) s_w + s_o + s_g = 1
(29) V_\phi = V_w + V_o + V_g = B_w \cdot V_W + \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} \cdot V_O + \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} \cdot V_G
(30) \phi = V_\phi/V = V_w/V + V_o/V + V_g/V = \phi_0 \cdot \exp(c_\phi \cdot (p-p_0))
(31) B_w \cdot V_W/V_{\phi0} + \frac{B_o - R_s \cdot B_g}{1-R_s \, R_v} \cdot V_O/V_{\phi0} + \frac{B_g - R_v \cdot B_o}{1-R_s \, R_v} \cdot V_G/V_{\phi0} = \exp(c_\phi \cdot (p-p_0)), \quad V_{\phi0} = V \cdot \phi_0


(32) \bar u_w = -  k_p \cdot \frac{k_{rw}}{\mu_w} \cdot \hat k * \big( \bar \nabla} p_w - \rho_w \cdot \bar g \big)


(33) \bar u_o = -  k_p \cdot \frac{k_{ro}}{\mu_o} \cdot \hat k * \big( \bar \nabla p_o - \rho_o \cdot   \bar g \big)
(34) \bar u_g = -  k_p \cdot \frac{k_{rg}}{\mu_g} \cdot \hat k * \big( \bar \nabla p_g - \rho_g \cdot   \bar g \big)
(35) k_p = \exp \big[ c_k \, (\,p - p_{\mathrm{ref}}\,) \big]
(36) \hat k * \bar v =   \bar e_1 \cdot (k_{11} \, v_1 + k_{12} \, v_2 + k_{13} \, v_3)   + \bar e_2 \cdot (k_{21} \, v_x + k_{22} \, v_y + k_{23} \, v_3)  + \bar e_3 \cdot (k_{31} \, v_1 + k_{32} \, v_2 + k_{33} \, v_3)

in arbitrary coordinate system \bold e = \{ \, \bar e_1, \, \bar e_2, \, \bar e_3 \, \} 

(37) \rho_w = \frac{ \mathring \rho_W}{B_w}
(38) \rho_o = \frac{ \mathring \rho_O + \mathring \rho_G \cdot R_s}{B_o}
(39) \rho_g = \frac{ \mathring \rho_G + \mathring \rho_O \cdot R_v}{B_g}




(40) \bar u_w = -  k_p \cdot \frac{k_{rw}}{\mu_w} \cdot \big( \hat k * \bar \nabla} p_w - \rho_w \cdot \hat k * \bar g \big)
(41) \bar u_o = -  k_p \cdot \frac{k_{ro}}{\mu_o} \cdot \big( \hat k * \bar \nabla p_o - \rho_o \cdot  \hat k * \bar g \big)
(42) \bar u_g = -  k_p \cdot \frac{k_{rg}}{\mu_g} \cdot \big( \hat k * \bar \nabla p_g - \rho_g \cdot  \hat k * \bar g \big)





(43) \bar u_w = -  k_p \cdot \frac{k_{rw}}{\mu_w} \cdot \big( \hat k * \bar \nabla} (p + p_{cw}) - \rho_w \cdot \hat k * \bar g \big)


(44) \bar u_o = -  k_p \cdot \frac{k_{ro}}{\mu_o} \cdot \big( \hat k * \bar \nabla (p + p_{co}) - \rho_o \cdot  \hat k * \bar g \big)
(45) \bar u_g = -  k_p \cdot \frac{k_{rg}}{\mu_g} \cdot \big( \hat k * \bar \nabla (p + p_{cg}) - \rho_g \cdot  \hat k * \bar g \big)


(46) p_w = p + p_{cw}, \quad p_{cw} = \frac{1}{3} \cdot ( -2 \cdot p_{cow} + p_{cog} )
(47) p_o = p + p_{co}, \quad p_{co} = \frac{1}{3} \cdot (p_{cow} + p_{cog})
(48) p_g = p + p_{cg}, \quad p_{cg} = \frac{1}{3} \cdot (p_{cow} - 2 \cdot p_{cog} )
(49) p = \frac{1}{3} \left( p_o + p_g + p_w \right)
(50) \dot p_{cw} = \frac{dp_{cw}}{ds_w}
(51) \dot p_{co} = \frac{dp_{co}}{ds_o}
(52) \dot p_{cg} = \frac{dp_{cg}}{ds_g}


(53) \hat k * \bar \nabla =   \bar e_1 \, (k_{11} \, \partial_1 + k_{12} \, \partial_2 + k_{13} \, \partial_3)   + \bar e_2 \,(k_{21} \, \partial_2 + k_{22} \, \partial_2 + k_{23} \, \partial_3)  + \bar e_3 \, (k_{31} \, \partial_1 + k_{32} \, \partial_2 + k_{33} \, \partial_3)



(54) \hat k * \bar g =   \bar e_1 \, (k_{11} \, g_1 + k_{12} \, g_2 + k_{13} \, g_3)   + \bar e_2 \,(k_{21} \, g_1 + k_{22} \, g_2 + k_{23} \, g_3)  + \bar e_3 \, (k_{31} \, g_1 + k_{32} \, g_2 + k_{33} \, g_3)






Spatial discretization 3D

(55) \frac{\partial \, V_{W \alpha}}{dt} = - \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta} \cdot \frac{1}{B_w} \cdot \bar u_w \, \bar n_{\alpha\beta} + q_{W\alpha}

(56) \frac{\partial \, V_{O\alpha}}{dt} = - \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta}  \cdot \left( \frac{1}{B_o} \cdot \, \bar u_o + \frac{R_v}{B_g} \cdot \, \bar u_g \right)  \bar n_{\alpha\beta} + q_O

(57) \frac{\partial \, V_{G\alpha}}{dt} = - \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot \left( \frac{R_s}{B_o} \cdot \, \bar u_o + \frac{1}{B_g} \cdot \, \bar u_g \right) \bar n_{\alpha\beta} + q_G

(58) V = \cup_\alpha \, V_\alpha
(59) \frac{\partial \, V_{W \alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta} \cdot U_{W\alpha\beta}} + q_{W\alpha}

(60) \frac{\partial \, V_{O\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{O\alpha\beta}   + q_O
(61) \frac{\partial \, V_{G\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{G\alpha\beta} + q_G




(62) U_{W\alpha\beta} = -  \frac{1}{B_w} \cdot \bar u_w \, \bar n_{\alpha\beta}



(63) U_{O\alpha\beta} = - \left( \frac{1}{B_o} \cdot \, \bar u_o + \frac{R_v}{B_g} \cdot \, \bar u_g \right) \, \bar n_{\alpha\beta}

(64) U_{G\alpha\beta} = - \left( \frac{R_s}{B_o} \cdot \, \bar u_o + \frac{1}{B_g} \cdot \, \bar u_g \right) \, \bar n_{\alpha\beta}




Spatial discretization 2D

(65) \frac{\partial \, V_{W \alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha}  A_{\alpha\beta} \cdot U_{W\alpha\beta}} + q_{W\alpha}



(66) \frac{\partial \, V_{O\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{O\alpha\beta}   + q_O
(67) \frac{\partial \, V_{G\alpha}}{dt} = \sum_{\beta \in \Gamma_\alpha} A_{\alpha\beta}  \cdot U_{G\alpha\beta} + q_G

(68) A_{\alpha\beta} =  D_{\alpha\beta} \cdot h_{\alpha\beta}





Specify local orthogonal coordinate system:

(69) \bold e_{\alpha\beta} = \{ \, \bar e_{1\alpha\beta}, \, \bar e_{2\alpha\beta}, \, \bar e_{3\alpha\beta} \, \}
(70) \bar e_{1\alpha\beta} = \cos \theta_{z\alpha\beta} \cdot \cos \zeta_{x\alpha\beta} \cdot \bar e_{x\alpha\beta} + \cos \theta_{z\alpha\beta} \cdot \sin \zeta_{x\alpha\beta} \cdot  \bar e_{y\alpha\beta} + \sin \theta_{z\alpha\beta} \cdot \bar e_{z\alpha\beta}
(71) \bar e_{2\alpha\beta} = \cos \theta_{z\alpha\beta} \cdot \sin \zeta_{x\alpha\beta} \cdot \bar e_{x\alpha\beta} + \cos \theta_{z\alpha\beta} \cdot \cos \zeta_{x\alpha\beta} \cdot  \bar e_{y\alpha\beta} + \sin \theta_{z\alpha\beta} \cdot \bar e_{z\alpha\beta}
(72) \bar e_{3\alpha\beta} = \sin \theta_{z\alpha\beta} \cdot \sin \zeta_{x\alpha\beta} \cdot \bar e_{x\alpha\beta} + \sin \theta_{z\alpha\beta} \cdot \cos \zeta_{x\alpha\beta} \cdot  \bar e_{y\alpha\beta} + \cos \theta_{z\alpha\beta} \cdot \bar e_{z\alpha\beta}
(73) \bar e_{1\alpha\beta} \cdot \bar e_{2\alpha\beta} = 0, \quad \bar e_e_{3\alpha\beta} \cdot \bar e_e_{3\alpha\beta} = 0, \quad \bar e_{2\alpha\beta} \cdot \bar e_{3\alpha\beta} = 0, \quad \bar e_{3\alpha\beta} = \bar e_{1\alpha\beta} \times \bar e_{2\alpha\beta}

(74) \bar n_{\alpha \beta} = \bar e_1
(75) \bar g = g \cdot \bar e_z = \sin \theta_z \, \bar e_1 + \cos \theta_z \, \bar e_3 = ( g_1 =  \sin \theta_z, \, g_2 = 0, \, g_3 = \cos \theta_z )
(76) \hat k * \bar g =   \bar e_1 \, (k_{11} \, g_1 + k_{13} \, g_3)   + \bar e_2 \,(k_{21} \, g_1 + k_{23} \, g_3)  + \bar e_3 \, (k_{31} \, g_1 + k_{33} \, g_3)
(77) \hat k * \bar g \cdot \bar n_{\alpha \beta} =  k_{11} \, g_1 + k_{13} \, g_3 = g \cdot ( k_{11} \, \sin \theta_{z\alpha\beta} + k_{13} \, \cos \theta_{z\alpha\beta} )
(78) \hat k * \bar \nabla \cdot \bar n_{\alpha \beta} =  k_{11} \, \partial_1 + k_{12} \, \partial_2 + k_{13} \, \partial_3 = k_{11} \, \partial_1 \quad \Leftarrow \, \partial_2 \equiv 0, \, \partial_3 \equiv 0
(79) \big( \hat k * \bar \nabla} p - \rho \cdot \hat k * \bar g \big) = k_{11} \, \partial_1 p - \rho \, g \cdot ( k_{11} \, \sin \theta_{z\alpha\beta} + k_{13} \, \cos \theta_{z\alpha\beta} )
(80) \big( \hat k * \bar \nabla} p - \rho \cdot \hat k * \bar g \big) \cdot \bar n_{\alpha \beta} = k_{11\alpha \beta} \, ( \partial_1 p -   \rho \, g \cdot \sin \theta_{z\alpha\beta} )
(81) \bar u_{\alpha \beta} \cdot \bar n_{\alpha \beta} = -  k_p \cdot \frac{k_{r}}{\mu} \cdot k_{11\alpha \beta} \, ( \partial_1 p -   \rho \, g \cdot \sin \theta_{z\alpha\beta} )
(82) \bar u_{\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{r}}{\mu} \cdot k_{11\alpha \beta} \cdot \big( R^{-1}_{\alpha\beta} \cdot (p_{\alpha\beta} - p_\alpha) -   \rho_\alpha \, g \cdot \sin \theta_{z\alpha\beta} \big)
(83) \bar u_{w\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{rw}}{\mu_w} \cdot k_{11\alpha \beta} \cdot \Big( R^{-1}_{\alpha\beta} \cdot \big( p_{w\alpha\beta} - p_\alpha - \dot p_{cw} \cdot (s_{w\beta} - s_{w\alpha}) \big) -   \rho_{w\alpha} \, g \cdot \sin \theta_{z\alpha\beta} \Big)
(84) \bar u_{o\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{ro}}{\mu_o} \cdot k_{11\alpha \beta} \cdot \big( R^{-1}_{\alpha\beta} \cdot (p_{o\alpha\beta} - p_\alpha) -   \rho_{o\alpha} \, g \cdot \sin \theta_{z\alpha\beta} \big)
(85) \bar u_{g\alpha\beta} \cdot \bar n_{\alpha \beta}  = -  k_p \cdot \frac{k_{rg}}{\mu_g} \cdot k_{11\alpha \beta} \cdot \big( R^{-1}_{\alpha\beta} \cdot (p_{g\alpha\beta} - p_\alpha) -   \rho_{g\alpha} \, g \cdot \sin \theta_{z\alpha\beta} \big)


(86) U_{W\alpha\beta} = \frac{k_{p\alpha}}{B_{w\alpha}} \cdot \frac{k_{rw\alpha}}{\mu_{w\alpha}} \cdot k_{11\alpha \beta} \cdot \big( R^{-1}_{\alpha\beta} \cdot (p_{\alpha\beta} - p_\alpha) -   \rho_{w\alpha} \, g \cdot \sin \theta_{z\alpha\beta} \big)




(87) U_{W\beta\alpha} = \frac{k_{p\beta}}{B_{w\beta}} \cdot \frac{k_{rw\beta}}{\mu_{w\beta}} \cdot k_{11 \beta\alpha} \cdot \big( R^{-1}_{\beta\alpha} \cdot (p_{\beta\alpha} - p_\beta) -   \rho_{w\beta} \, g \cdot \sin \theta_{z\beta\alpha} \big)




(88) U_{W\alpha\beta} = U_{W\beta\alpha}





See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model / Modified Black Oil fluid @model

Petroleum Industry / Upstream / Production / Subsurface Production / Well & Reservoir Management / Formation pressure / Multiphase formation pressure


l

  • No labels