Page tree

The Modified Black Oil ( = Volatile Oil) flow model simulates 3-component fluid : water, liquid hydrocarbon (called "oil") and gaseous hydrocarbons ( called "gas") that flow in 3 possible phases (water, gasified oil and free gas) and defined by the following set of equations:

(1) \partial_t \bigg [ \phi \ \rho_W \bigg ] + \nabla \bigg ( \rho_{Ww} \ \mathbf{u}_w \bigg ) = q_{mW}(\mathbf{r})
(2) \partial_t \bigg [ \phi \ \rho_O \bigg ] + \nabla \bigg ( \rho_{Oo} \ \mathbf{u}_o + \rho_{Og} \ \mathbf{u}_g \bigg ) = q_{mO}(\mathbf{r})
(3) \partial_t \bigg [ \phi \ \rho_G \bigg ] + \nabla \bigg ( \rho_{Go} \ \mathbf{u}_o + \rho_{Gg} \ \mathbf{u}_g \bigg ) = q_{mG}(\mathbf{r})
(4) \mathbf{u}_w = - k_a \ \frac{k_{rw}(s_w, s_g)}{\mu_w} \ ( \nabla P_w - \rho_w \mathbf{g} )
(5) \mathbf{u}_o = - k_a \ \frac{k_{ro}(s_w, s_g)}{\mu_o} \ ( \nabla P_o - \rho_o \mathbf{g} )
(6) \mathbf{u}_g = - k_a \ \frac{k_{rg}(s_w, s_g)}{\mu_g} \ ( \nabla P_g - \rho_g \mathbf{g} )
(7) P_o - P_w = P_{cow}(s_w)
(8) P_o - P_g = P_{cog}(s_g)
(9) s_w + s_o + s_g = 1




(10) (\rho \,c_{pt})_m \frac{\partial T}{\partial t}   - \ \phi \sum_{a = \{w,o,g \}} \rho_\alpha \ c_{p \alpha} \ \eta_{s \alpha} \ \frac{\partial P_\alpha}{\partial t}   + \bigg( \sum_{a = \{w,o,g \}} \rho_\alpha \ c_{p \alpha} \ \epsilon_\alpha \ \mathbf{u}_\alpha \bigg) \nabla P   + \bigg( \sum_{a = \{w,o,g \}} \rho_\alpha \ c_{p \alpha} \ \mathbf{u}_\alpha \bigg) \ \nabla T   - \nabla (\lambda_t \nabla T) = \frac{\delta E_H}{ \delta V \delta t}



Equations  (1) –  (3) define the continuity of the fluid components flow or equivalently represent the mass conservation of each mass component  \{ m_W, \ m_O, \ m_G \} during its transportation in space. 

Equations  (4) –  (6) define the motion dynamics of each phase, represented as linear correlation between phase flow speed   \bar u_\alpha and partial pressure gradient of this phase  \bar \nabla P_\alpha (which is also called Darcy flow  with account of the gravity and relative permeability).


Equations  (7) –  (8) define the hydrodynamic inter-facial balance between the phases with account of capillary pressure in porous formation  P_{cow}, \ P_{cog}. The key assumption is that capillary pressure at oil-water boundary is a function of  water saturation alone  P_{cow} = P_{cow}(s_w) and capillary pressure at oil-gas boundary is a function of  gas saturation alone  P_{cog} = P_{cog}(s_g)

In the absence of capillary pressure the inter-facial equilibrium simplifies and implies that all phases are at the same pressure at all times.  


Equations  (9)  implies that porous space is fully occupied by fluid at all times  \{ s_w, s_o, s_g \}.


Equation  (10)  defines the heat flow continuity or equivalently represents heat conservation due to heat conduction and convection with account for adiabatic and Joule–Thomson throttling effect.

The term  \frac{\delta E_H}{ \delta V \delta t}  defines the speed of change of  heat energy  E_H volumetric density.

In impermeable rocks ( \phi =0, \; \bar u_\alpha = 0) heat flow is defined by heat conduction only:

(11) \rho_r \, c_{pr} \frac{\partial T}{\partial t} - \nabla (\lambda_t \nabla T) = \frac{\delta E_H}{ \delta V \delta t}

The effective specific heat capacity of formation with multiphase flow is a simple sum of its components:

(12) (\rho \,c_{pt})_p  = (1-\phi) \rho_r \, \ c_{pr} + \phi \ (s_w \rho_w \, c_{pw} + s_o \rho_o \, c_{po} + s_g \rho_g \, c_{pg} )

The effective thermal conductivity of formation with multiphase flow is assumed to be a sum of its components:

(13) \lambda_{t} = (1-\phi) \ \lambda_r + \phi \ (s_w \lambda_w + s_o \lambda_o + s_g \lambda_g )

The term  \bigg( \sum_{a = \{w,o,g \}} \rho_\alpha \ c_{p \alpha} \ \mathbf{u}_\alpha \bigg) \ \bar \nabla T  represents heat convection defined by the mass flow. 

The term  \bigg( \sum_{a = \{w,o,g \}} \rho_\alpha \ c_{p \alpha} \ \epsilon_\alpha \ \mathbf{u}_\alpha \bigg) \bar \nabla P represents the heating/cooling effect of the multiphase flow through the porous media. This effect is the most significant with light oil and gases.


The term  \ \phi \sum_{a = \{w,o,g \}} \rho_\alpha \ c_{p \alpha} \ \eta_{s \alpha} \ \frac{\partial P_\alpha}{\partial t} represents the heating/cooling effect of the fast adiabatic pressure change. This usually takes effect in and around the wellbore during the first minutes or hours after changing the well flow regime (as a consequence of choke/pump operation). This effect is absent in stationary flow and negligible during the quasi-stationary flow and usually not modeled in conventional monthly-based flow simulations. 


The set  (1) –  (10) represent the system of 16 scalar equations on 16 unknowns: 

\{ T, \ P_w, \ P_o, \ P_g, \ s_w, \ s_o, \ s_g, \ u_w^x, \ u_w^y, \ u_w^z, \ u_o^x, \ u_o^y, \ u_o^z, \ u_g^x, \ u_g^y, \ u_g^z \},

which are all functions of time and space coordinates  (t, \mathbf{r}) = (t,x,y,z).


Expressing the molar densities with mass shares and phase density (see also "Volatile Oil Model") one gets:


(14) \partial_t \bigg [ \phi \ \rho_W \bigg ] + \nabla \bigg ( \rho_w \ \mathbf{u}_w \bigg ) = q_{mW}(\mathbf{r})
(15) \partial_t \bigg [ \phi \ \rho_O \bigg ] + \nabla \bigg ( {\tilde m}_{Oo} \ \rho_o \ \mathbf{u}_o + {\tilde m}_{Og} \ \rho_{g} \ \mathbf{u}_g \bigg ) = q_{mO}(\mathbf{r})
(16) \partial_t \bigg [ \phi \ \rho_G \bigg ] + \nabla \bigg ( {\tilde m}_{Go} \ \rho_{o} \ \mathbf{u}_o + {\tilde m}_{Gg} \ \rho_g \ \mathbf{u}_g \bigg ) = q_{mG}(\mathbf{r})
(17) \mathbf{u}_w = - k_a \ \frac{k_{rw}(s_w, s_g)}{\mu_w} \ ( \nabla P_w - \rho_w \mathbf{g} )
(18) \mathbf{u}_o = - k_a \ \frac{k_{ro}(s_w, s_g)}{\mu_o} \ ( \nabla P_o - \rho_o \mathbf{g} )
(19) \mathbf{u}_g = - k_a \ \frac{k_{rg}(s_w, s_g)}{\mu_g} \ ( \nabla P_g - \rho_g \mathbf{g} )
(20) P_o - P_w = P_{cow}(s_w)
(21) P_o - P_g = P_{cog}(s_g)
(22) s_w + s_o + s_g = 1


Substituting the values of mass densities and mass shares of fluid components (see Modified Black Oil fluid @model) and dividing each equation by density of corresponding component in standard conditions one gets the most popular form of Modified Black Oil Reservoir Flow @model


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Dynamic Flow Model / Modified Black Oil Reservoir Flow @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Fluid (PVT) Analysis / Fluid @model / Modified Black Oil fluid @model






  • No labels