Page tree

@wikipedia


Darcy friction factor  f depends on Reynolds number and a shape and roughness  \epsilon of inner pipe walls:

f = f({\rm Re}, \epsilon)


For a smooth ( \epsilon = 0) tubular pipeline Darcy friction factor  f can be estimated from various empirical correlations

(1) f = 64 \, \rm Re^{-1}


\rm Re < 2,100


Laminar fluid flow

no universal correlations due to a high flow instability

2,100 < \rm Re < 4,000

Laminar-turbulent transition fluid flow

(2) f = 0.32 \, \rm Re^{-0.25}


4,000 < \rm Re < 50,000


Turbulent fluid flow

(3) f = 0.184 \, \rm Re^{-0.2}


\rm Re > 50,000


Strong-turbulent fluid flow

where

{\rm Re}(l) = \frac{d \, v \, \rho}{\mu}

Reynolds number

d(l)

Inner diameter of a pipe

\mu(l) = \mu( \, p(l), \, T(l) \,)

dynamic fluid viscosity as function \mu(p, T) of pressure p(l) and temperature T(l) along the pipe


For non-smooth pipelines  \epsilon > 0 the Darcy friction factor  f  can be estimated from empirical Colebrook–White correlation which works for non-laminar flow:

(4) \frac{1}{\sqrt{f}} = -2 \, \log \Bigg( \frac{\epsilon}{3.7 \, d} + \frac{2.51}{{\rm Re} \sqrt{f}} \Bigg)

Typical surface roughness of a factory steel pipelines is  \epsilon = 0.05 mm which may increase significantly under mineral sedimentation or erosive impact of the flowing fluids.

See Surface roughness for more data on typical values for various materials and processing conditions.

Interpolated full-range model



The most popular full-range model of Darcy friction factor is:

(5) \begin{cases} f = 64/\mbox{Re} & \forall & \mbox{Re}<2,100 \\f = 0.03048 + k \cdot ( \mbox{Re} -2,100) & \forall & 2,100 < \mbox{Re}<4,000 \\f = f_{CW}( \mbox{Re}, \, \epsilon) & \forall & \mbox{Re}>4,000 \end{cases}

where

f_{CW}(\mbox{Re}, \epsilon)

Colebrook–White correlation

\displaystyle k = \frac{ f_{CW}( \mbox{Re} =4,000, \, \epsilon) -0.03048}{1,900}

interpolation multiplier between laminar and turbulent flow regimes


Bellos full-range model


(6) f = \frac{64}{\rm Re} \cdot \Phi
(7) \Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a} \cdot \left( 0.75 \cdot \ln \frac{{\rm Re}}{5.37} \right)^{-2 \,(1-a)\,b} \cdot \left( 0.83 \cdot \ln \frac{3.41}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
(8) a = \left[ 1+ \left( \frac{{\rm Re}}{2712} \right)^{8.4} \right]^{-1}
(9) b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{150} \right)^{1.8} \right]^{-1}


Cheng full-range model


(10) f = \frac{64}{\rm Re} \cdot \Phi
(11) \Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a} \cdot \left( 1.8 \cdot \ln \frac{{\rm Re}}{6.8} \right)^{-2 \,(1-a)\,b} \cdot \left( 2.0 \cdot \ln \frac{3.7}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
(12) a = \left[ 1+ \left( \frac{{\rm Re}}{2720} \right)^9 \right]^{-1}
(13) b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{160} \right)^2 \right]^{-1}


Churchill full-range model



(14) f = \frac{64}{\rm Re} \cdot \Phi
(15) \Phi = \left[ 1+ \frac{\left(\rm Re / 8 \right)^{12} }{ \left( \Theta_1 + \Theta_2 \right)^{1.5} } \right]^{1/12}
(16) \Theta_1 = \left[ 2.457 \, \ln \left( \left( \frac{7}{\rm Re} \right)^{0.9} + 0.27 \, \frac{\epsilon}{d} \right) \right]^{16}
(17) \Theta_2 = \left( \frac{37530}{\rm Re} \right)^{16}


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Surface roughness ] [ Reduced Friction Factor (Φ) ]

Reference


Moody’s Friction Factor Calculator @ gmallya.com




  • No labels