Page tree

@wikipedia


The momentum balance equation relating a pressure gradient \nabla p in porous medium with induced fluid flow (percolation) with velocity  {\bf u}:

(1) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g} )

where

M

fluid mobility

\nabla

gradient operator

\rho

fluid density 

{ \bf g }

gravity vector pointing along Earth's Gravity Direction 


In single-phase flow the Darcy flow equation takes a following form:

(2) {\bf u} = - \frac{k}{\mu} \cdot ( \nabla p - \rho \, {\bf g} )

where

k

formation permeability

\mu

fluid viscosity


Darcy flow only happens for relatively slow percolation { \rm Re} < 2,000.

For a wider range of flow regimes see Forchheimer Equation.


In multiphase flow the different phases  \alpha move with different velocities  {\bf u}_\alpha and  Darcy flow equation is applicable for each phase independently:

(3) {\bf u}_{\alpha} = - \frac{k_{\alpha}}{\mu_{\alpha}} \cdot ( \nabla p_{\alpha} - \rho_{\alpha} \, {\bf g} )

where

p_\alpha

phase pressure of the  \alpha-phase

k_\alpha

phase permeability of the  \alpha-phase

\rho_\alpha

fluid density of the  \alpha-phase

\mu_\alpha

fluid viscosity of the  \alpha-phase


In some practical cases the phases are moving in reservoir with similar velocities and have similar phase pressure which allows study of multiphase flow by aggregating them into a single-phase equivalent (1) using the multi-phase mobility  M (see also Linear Perrine multi-phase diffusion @model). 


See also


Physics /  Fluid Dynamics / Percolation

Forchheimer Equation ][ Linear Perrine multi-phase diffusion @model ]


References


 Jules Dupuit (1863). Etudes Théoriques et Pratiques sur le mouvement des Eaux dans les canaux découverts et à travers les terrains perméables (Second ed.). Paris: Dunod.



  • No labels