Page tree

Cumulative injection of all surface fluids into a reservoir from the beginning of production  t_0 until current moment of time  t adjusted to reservoir conditions:

(1) Q^{\downarrow}_t(t)=\int_{t_0}^t q^{\downarrow}_t(\tau) d\tau

where

q^{\downarrow}_t(\tau)

instantaneous intakes at time moment \tau

 
Depending on context may mean:

Water InjectionGas InjectionWater Injection + Gas Injection
(2) Q^{\downarrow}_W(t)=\int_{t_0}^t B_w q^{\downarrow}_W(\tau) d\tau
(3) Q^{\downarrow}_G(t)=\int_{t_0}^t B_g q^{\downarrow}_G(\tau) d\tau


(4) Q^{\downarrow}_t(t)=Q^{\downarrow}_W(t) + Q^{\downarrow}_G(t)

where

q^{\downarrow}_W(\tau), \, q^{\downarrow}_G(\tau)

water, gas surface flowrates at time moment \tau

p_e(\tau), T_e(\tau)

formation pressure and formation temperature at time moment \tau

B_w(p_e(\tau), T_e(\tau)), \, B_g(p_e(\tau), T_e(\tau))

formation volume factors between separator and sandface pressure/temperature conditions


The difference between cumulative intakes and cumulative injection is that cumulative intakes accounts for the shrinkage factors and cross-phase exchange coefficients  which depend on formation pressure  p_e(t) and formation temperature  T_e(\tau) and may vary over time:


Cumulative Intakes

(no reference to the fluid)

Cumulative Injection

(no reference to the fluid)

Q^{\downarrow}_{\rm in} = \int_0^t B(p(\tau), T(\tau)) q^{\downarrow}(\tau) d\tau

Q^{\downarrow}_{\rm inj} = \int_0^t q^{\downarrow}(\tau) d\tau

See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis

Intakes ] [ Cumulative Offtakes ] [ Cumulative VRR ]




  • No labels